

FLOOD ASSESSMENT & STORM WATER MANAGEMENT PLAN

FOR THE PROPOSED EXPANSION OF WOODBURN SHOPPING CENTRE IN PIETERMARITZBURG, MSUNDUZI LOCAL MUNICIPALITY, UMGUNGUNDLOVU DISTRICT, KWA-ZULU NATAL

Compiled by

Dr Bruce Scott-Shaw & Andrew Boardman NatureStamp (Pty) Ltd Tel 078 399 9139 Email bruce@naturestamp.com Compiled for

Joleen Wilson Tel: 078 198 9118 Email: joleenwilson06@gmail.com

December 2022 (Updated August 2023) FINAL REPORT

The White House, 22 Hilton Ave • PO Box 949, Hilton, 3245 • Tel: 033 343 1352 • Cell: 083 289 4912 susan@naturestamp.com • www.naturestamp.com

Table of Contents

Tables	S	3
Figure	S	3
Annex	ures	3
Specia	alist Details & Declaration	4
1.	INTRODUCTION	5
1.1	Project Background and Description of the Activity	5
1.2	Terms of reference	7
1.3	Gauged versus Ungauged Catchments	7
2.	STUDY SITE	8
3.	METHODOLOGY	8
3.1	Site Visit	8
3.2	Critical Catchment Delineation and River Reach Analysis	9
3.3	Design Storm Determination	10
3.4	Storm Water Design Principles	11
3.5	Design Flood Determination	12
3.6	Flood Line Determination	12
3.7	Flood Line Determination for Minor Channels	13
4.	LIMITATIONS AND ASSUMPTIONS	13
5.	RESULTS AND DISCUSSION	14
5.1	Desktop Hydrological Assessment	14
5.2	Allowable Abstractions and Water Registration	16
5.3	Catchment	16
5.4	Design Rainfall	19
5.5	Design Storm Determination	19
	5.5.1 Storm Water Volumes	19
	5.5.2 Storm Water Management Structures	19
5.6	Design Rainfall	21
5.7	Design Peak Discharge	21
5.8	Hydraulic Modelling	21
5.9	Potential Spill Scenarios	25
5.10	Mitigation Measures and Recommendations (Spill Management Plan)	25
5.11	Erosion Control Plan	
6.	CONCLUSION	27
7.	REFERENCES	

Tables

Table 1	Mean monthly rainfall and temperature observed at Scottsville (derived from
	historical data)
Table 2	Data type and source for the assessment
Table 3	Comparison of values from some of the rainfall stations that were assessed
	during the data analysis14
Table 4	Proposed land cover area for the contributing catchment area16
Table 5	Design rainfall depth for the nearest reliable rainfall station
Table 6	Calculated peak runoff for the pre- and post-development state sub-
	catchments for a 1:50 year return period using the SCS-SA method
Table 7	Comparison between the various one-day design rainfall estimation techniques
	available for the study site
Table 8	Adopted design peak discharge values (m ³ .s-1) run through HEC-RAS for the
	catchment area
Table 9	Intervention measures per activity at the proposed Woodburn Mall Extension23

Figures

Figure 1	The receiving environment of the Woodburn Shopping Centre Expansion area5
Figure 2	Locality map of the Woodburn Shopping Centre Expansion
Figure 3	General site conditions and structures observed during the site visit9
Figure 4	Soil Water Assessment Tool (SWAT) watershed delineation tool for sub-catchment
	delineation and stream network creation10
Figure 5	Longitudinal profile and channel cross sections developed for a section of the
	Foxhillspruit
Figure 6	GIS model for flood generation in small channels
Figure 7	Long term synthesized annual rainfall values with the mean annual precipitation
	indicated in blue14
Figure 8	Historical streamflow from gauging stations within the catchment area of the
	Umsunduzi River
Figure 9	Existing land use for the catchment area of Woodburn Shopping Centre
	Expansion
Figure 10	Exaggerated (x3) Digital Elevation Model (DEM) of the catchment surrounding
	Woodburn Shopping Centre
Figure 11	Storm water control infrastructure for the proposed Woodburn Mall expansion
	(RFJ & Associates)
Figure 12	1:100 year flood extent for the Woodburn Shopping Centre Expansion site22

Annexures

ANNEXURE A	Design Rainfall Estimation
ANNEXURE B	Rational Method
ANNEXURE C	SCS Method

Specialist Details & Declaration

This report has been prepared in accordance with Section 13: General Requirements for Environmental Assessment Practitioners (EAPs) and Specialists as well as per Appendix 6 of GNR 982 – Environmental Impact Assessment Regulations and the National Environmental Management Act (NEMA, No. 107 of 1998 as amended 2017) and Government Notice 704 (GN 704). It has been prepared independently of influence or prejudice by any parties.

Document control									
		Flood Assessment & Storm Water Management Plan for the Proposed							
Report title		Expansion of Woodburn Sh	Expansion of Woodburn Shopping Centre in Pietermaritzburg,						
		Msunduzi Local Municipali	ty, Umgungund	lovu	District, Kv	va-Zulu Natal			
Document ID		011222-001	Proj. number	JW-	011222-00	1			
Client		Joleen Wilson/Barnes Property	Client contact	078	078 198 9118				
Rev	Date	Rev details/status	Prepared by	Auth	nor	Approver			
1	01/12/2022	Draft	BCSS BCS		S	BCSS			
Key Words		Groundwater, Boreholes, C	Geology						
Approval									
Author signature		Sur)	Co-author signature		Abufa				
Name		Bruce Scott-Shaw	Name	Andrew		Boardman			
Title	e Director Title Associate			Ð					
Affiliations	Affiliations SACNASP:118673								
© Copyright: Natu	reStamp (Pty)) Ltd.							

1. INTRODUCTION

1.1 Project Background and Description of the Activity

NatureStamp has been contracted to conduct a flood assessment for the extension of the existing Woodburn Shopping Centre. A development has been proposed on Sub 0 and Sub 5 of Erf 10278 of Pietermaritzburg. Given the proximity of the site to a stream/canal, a flood assessment is required. The proposed development is located on the following erven sites:

Sub Div	Farm No.	Town Name	Latitude	Longitude	Area (m ²)	SG Code	Deed
5	10278	Pietermaritzburg	30.3908	-29.6162	17 824	N0FT02580000434600005	N/A
0	10278	Pietermaritzburg	30.3911	-29.6106	64 573	N0FT02580000434600000	N/A

Uninformed and poorly planned infrastructural developments in the vicinity of water resources, such as sensitive surface and groundwater, can rapidly degrade these resources. Thus, pre-development (or in some cases post development) assessments are required to gain an understanding of the natural environment and guide the developmental process in order that site-specific mitigation measures can be put in place.

The key requirements for this study are as follows:

- 1. Desktop hydrological assessment.
- 2. Catchment analysis.
- 3. Storm water management plan.
- 4. Design flood investigation.
- 5. Reporting (report & maps in pdf format).

The receiving environment as of May 2022 can be seen in Figure 1 with the layout of the site in Figure 2.

Figure 1 The receiving environment of the Woodburn Shopping Centre Expansion area

Figure 2 Locality map of the Woodburn Shopping Centre Expansion

1.2 Terms of reference

- i. Flood Hydrology:
 - a. Hydraulic analysis, illustrated by the:
 - Catchment delineation;
 - Analysis or derivation of peak flow events (using observed flow or design methods);
 - Compilation of the river reach model and flood line using HEC-RAS and HEC-geoRAS;
 - Backwater calculations and findings;
 - Determination of the flood risk and flood hazard throughout the study site; and
 - Recommendation of mitigation options associated with the hydraulic analysis.
 - b. Consolidate results in a report with:
 - 1:50 and 1:100 Flood line maps (drawing in pdf format, flood lines plot in dwg/dxf format);
 - A final flood line report; and
 - Recommendation of mitigation options associated with the hydraulic analysis.
- ii. Storm Water Management Plan
- Site hydrological assessment, undertaken by the:
 - a. Analysis of surface areas of the site;
 - b. Analysis of sensitive areas on site;
 - c. Analysis of existing storm water structures on site; and
 - d. Determination of areas with clean and dirty water.
- Hydraulic design analysis, illustrated by the:
 - a. Determination of the design storm event (1:2, 1:10 & 1:50 year return period);
 - b. Determination of the capability of proposed structures; and
 - c. Recommendation of mitigation options and improvements.
- Erosion control plan
 - a. Compilation of erosion control measures;
 - b. Identification of high risk areas, exclusion areas and potential stockpile areas;
 - c. Final erosion mitigation measures and rehabilitation objectives.
 - Consolidate results in a report with:
 - a. Storm water maps;
 - b. CAD storm water drawings; and
 - c. A storm water management plan.

1.3 Gauged versus Ungauged Catchments

Flood hydrology assessments can be limited if the information available is scant. In the Pietermaritzburg area (which, in recent years experienced a severe drought) most of the smaller tributaries (excluding large rivers) do not flow all year round as they have done in the past. This can be explained by changes in land use through intensification and increased areas under crops or commercial forests, an increase in water extraction (irrigation, dams, industrial needs and human needs), cyclic drought and climate change. Much of the flow in these rivers is not always accurately recorded by weirs. When a flood hydrology assessment is undertaken, depending on the data available, either gauged or ungauged catchments can be assessed. Gauged data are the most accurate approach assuming that the data quality is reliable and over a long period of time. In the absence of such data, an ungauged catchment is assessed using observed rainfall. This data (assuming it is of good quality) is used as an input to a rainfall-runoff model. The design flood is determined using a statistical analysis of the rainfall and the catchment characteristics.

In large catchment areas the antecedent moisture content is important for 1:100 year flood events. If the catchment is very dry before such an event, dams may fill up first from the flood waters and part of the rainfall may infiltrate, resulting in a reduced flow through the system, whereas a saturated catchment would result in a shorter lag time and a larger flow volume in the channel. This can lead to a difference in a simulated flood using design rainfall (ungauged) and a flood using observed streamflow (gauged). Furthermore, the large flood events are often poorly recorded in weirs due to poor maintenance and overtopping.

For the study area, streamflow data was not available. As such, a detailed rainfall and flow assessment was undertaken to determine the design events.

2. STUDY SITE

The site is located within Quaternary Catchment U20J; falling under the uMvoti to Mzimkulu Management Area (WMA) and the uMgeni waterboard (uMgeni Water). The proposed area sits on a modified tributary of the uMsunduze river, known as the Foxhillspruit canal.

The Foxhillspruit and the Msunduzi are highly degraded due to the presence of settlements, rubbish dumps and factories that have encroached along the edge and impacted upon of this watercourse. Given the vulnerable state of these watercourse systems, and their associated high population, all catchments areas contributing to this system should be given extra attention and precaution regarding development proposals.

Rainfall in the region occurs in the summer months (mostly December to February), with a mean annual precipitation of 859 mm (observed from rainfall station 0239756 W). The reference potential evaporation (ET₀) is approximately 1667 mm (A-pan equivalent, after Schulze, 2011) and the mean annual evaporation is between 1300 – 1400 mm, which exceeds the annual rainfall. This suggests a high evaporative demand and a water limited system. Summers are warm to hot and winters are cool. The mean annual temperature is approximately 21.5 °C in summer and 13.8 °C in the winter months (Table 1). The underlying geology of the site is sedimentary Ecca Shale and the soils overlain are sandy-clay-loam ranging from Mispah, Glenrosa to Oakleaf form in this particular area. Much of the soils identified on site were transported material and highly modified.

 Table 1
 Mean monthly rainfall and temperature observed at Scottsville (derived from historical data)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
Mean Rainfall (mm)	119	110	98	42	17	7	6	19	37	81	97	108	756
Mean Temperature (°C)	21.5	21.6	21.0	18.5	16.0	13.7	13.8	15.3	17.3	18.0	19.2	20.8	18.1

3. METHODOLOGY

The following methodology was followed in order to meet the objectives as detailed in the terms of reference. The assessment of these systems considered the following databases where relevant:

Table 2 Data type and source for the assessment

Data Type	Year	Source/Reference
Aerial Imagery	2016	Surveyor General
1:50 000 Topographical	2011	Surveyor General
2 m Contour	2010	Surveyor General
River Shapefile	2011	EKZNW
Geology Shapefile	2011	Durban Geological Sheets/National Groundwater Archive
Land Cover	2014	EKZNW
Water Registration	2013	WARMS - DWS

*Data will be provided on request

3.1 Site Visit

A site visit was conducted by Bruce Scott-Shaw of NatureStamp on the May 2022. A pre-development state was assessed. The current condition was assessed as follows -

- The vegetation characteristics of the watercourse were assessed for the determination of the Manning's n-values;
- The presence and dimensions of any crossings, such as culverts and bridges, that would act as a barrier to a flood event and that may be damaged during the occurrence of such an event were noted;
- The overall state of drainage channels, streams and rivers was assessed;
- The slope of the study site as well as evidence of flood damage and erosion around the site were noted;
- The state of existing gauging stations (nearby) was assessed to determine if the structure is accurately recording streamflow (e.g. evidence of under cutting or damaged features); and

• The elevation at the water level and crossing level in order to verify contour data.

The watercourse systems were flowing at the time of the site visit. As a result, a full river profile was undertaken. Depth poles were used to measure the depth of the channel where possible.

Figure 3 General site conditions and structures observed during the site visit

3.2 Critical Catchment Delineation and River Reach Analysis

The critical contributing catchment area was determined for use in both the watershed delineation tool and HEC-HMS and SWAT models. The sub-catchments were delineated using the 2 m contour set provided by the topographical survey as an input. This was used to create a Digital Elevation Model (DEM) that was then used as an input to the watershed tool (Figure 4).

DEM Setup	0	[Outlet and Inlet Defini	ition
Open DEM	Raster		Subbasin outlet	
			Inlet of draining was a standard of draining	atershed
	DEM projection setup		Add point source input to each subbasin	Add by Table
Mask			Editma	anually /++ /++
Burn In				(ADD) (DELETE) (REDEFINE)
Stream De	finition		Watershed Outlets(s)) Selection and Definition
DEM-ba	ised			
Pre-defi	ined streams and watersheds		Wholewatershed	Cancel selection
DEM-base	ed		outlet(s)	UNDO
	Flow direction and accumulation			Delineate watershed
Area	i:	[Ha]		
Num	ber of cells:		Calculation of Subbas	sin Parameters
Pre-define Watershe	ed ed dataset:		Reduced report output	Calculate subbasin parameters
Stream d	ataset:		geometry check	
Stream ne	etwork		Skip longest flow path calculation	reservoir ADD
Create st	treams and outlets	У	Number of outlets: Number of subbasins:	Exit Minimize

Figure 4 Soil Water Assessment Tool (SWAT) watershed delineation tool for sub-catchment delineation and stream network creation

The pre-development conditions were assessed as follows -

- The vegetation and surface characteristics of the watercourse were assessed for the determination of the Manning's n-values;
- The presence and dimensions of any storm water structures, such as culverts, bridges, drains, berms and gutters that would divert flow during a storm event were noted;
- The overall state of drainage channels, streams and nearby rivers was assessed;
- The slope of the study site as well as evidence of erosion around the site were noted; and
- The elevation throughout the site in order to verify contour data.

In accordance with Government Notice 704 (GN 704) and Best Practice Guidelines (BPG), the main objectives of a SWMP were:

- 1. To accommodate post-development storm events;
- 2. To keep clean and dirty water separated;
- 3. To contain any dirty water within a system; and
- 4. To prevent contamination of clean water.

A range of storm water design events were considered. 2-meter contours obtained from the Surveyor General were obtained and improved using a GPS. Rainfall data was extracted using the rainfall extraction utility tool (Kunz, 2003). Contributing catchment areas were calculated using the derived elevation model.

The critical contributing catchment area was determined for use in both the watershed delineation tool and HEC-HMS and SWAT models. The sub-catchments were delineated using the 2m contour set as an input. This was used to create a Digital Elevation Model (DEM) that was then used as an input to the watershed tool (Figure 4). Design rainfall depths using the Design Rainfall Estimation (DRE) tool was used for the nearest rainfall station.

3.3 Design Storm Determination

The peak flows for the 1:2, 1:5, 1:10, 1:50 and 1:100 storm events were calculated for the catchments using the SCS-SA method as outlined in the SANRAL Drainage Manual (6th Edition, 2013). The type of surface in the drainage basin is an important component in the design calculations. The SANRAL Rational Method becomes more accurate as the amount of impervious surface, such as pavements and rooftops, increases. As a result, the Rational Method is most often used in urban and suburban areas (ODOT Hydraulics Manual, 2014). The

Utility Programme for Drainage (Sinotech) was used to run the rational method, determine drainage grid and kerb drainage calculations.

It generally recognised that the 1:50 year return design for a 30-minute storm event be used as the typical event to design for.

3.4 Storm Water Design Principles

The objective of the Stormwater Management Plan is to control runoff flows and prevent detrimental impacts on receiving waters, considering both the quality and quantity of the stormwater runoff. As the existing site has natural impervious areas, steep slopes and shallow soils, the velocity of stormwater runoff would be considered high. However, as the site is located near the catchment divide, there are little to no upper catchment contributions.

Stormwater management design principles to be followed on site include:

- Clean water should be kept clean, as far as possible, and be routed to a natural watercourse by a system separate from the dirty water system and should be allowed to pass through to downstream users, while preventing or minimising the risk of spillage of clean water into dirty water systems.
- The establishment and maintenance of grass and plants adjacent to newly constructed infrastructure and roads.
- Dirty water must be collected and contained in a system separate from the clean water system and the risk of spillage or seepage into clean water systems must be minimised. The containment of dirty or polluted water will minimize the impact on the surrounding water environment.
- The design standard stipulated by GN704 is not that a 1 in 50-year flood should be captured, but that the structure may not spill more than once every 50 years. Design storage volumes are a function of peak storage requirements that often correspond to abnormally wet conditions that continue for an extended period of time, and not to a specific flood event
- Hazardous or environmentally dangerous chemicals kept on site must be kept outside of the 1:100 year flood line and watercourses or appropriately bunded.
- Regulations stipulate a clear hierarchy of water use. Firstly, recycle any captured dirty water and minimise the import and use of clean water resources. Should excess water be released from a dirty water area, it must be treated to a standard agreed to by the regulator, the Department of Water Affairs and Sanitation (DWS), and any plan to treat and release excess water must be approved and licensed.
- The SWMP must be sustainable over the life cycle of the development and over different hydrological cycles and must incorporate principles of risk management.
- Groundcover should be maintained during construction to ensure erosion protection.
- Flow concentration points should avoid unstable soil areas and/or stockpiles.
- Ensure aesthetic designs.

The above-mentioned principles are to be used as a conceptual stormwater management guide. The Msunduzi Municipality recognises the following:

- The difference between the Pre and Post storm water flows would need to be calculated using the rational method.
- The difference would need to be stored on site and released at the pre-development flow.
 - These calculations would be based on the following
 - o 1:50 year return storm design.
 - o 30 minute storm (Hydrograph peaking at 15 minutes)
 - o Intensity of 165 mm/hr.
 - "C" Factors: Pre-dev C factor = 0.35 (for the entire site, in original undeveloped state).
 - Post –dev C factor for landscaped/grassed areas = 0.45
 - Post –dev C factor for hardened surfaces =0.85

These calculations can be simplified to:

- 1m³ to be attenuated for every 48 m² of hardened surface.
- 1m³ to be attenuated for every 242 m² of soft / landscaped surface.

3.5 Design Flood Determination

The peak flows for the 1:10, 1:50 and 1:100 flood events were calculated for the catchments using the rational method, the SCS-SA model and the Standard Design Flood Method as outlined in the SANRAL Drainage Manual (2013). The 1:10 and 1:50 year events were included for comparative reasons even though they were not a required output. The SCS-SA model is a hydrological storm event simulation model suitable ideally for application on catchments that have a contributing catchment of less than 30 km². The model has been used widely both internationally and nationally for the estimation of flood peak discharges and volume (Schulze et al., 1992). The type of surface in the drainage basin is also important. The Rational Method becomes more accurate as the amount of impervious surface, such as pavements and rooftops, increases. As a result, the Rational Method is most often used in urban and suburban areas (ODOT Hydraulics Manual, 2014).

3.6 Flood Line Determination

Modelling of the flood lines was undertaken using the U.S. Army Corps of Engineers' HEC-RAS v5.05 programme, which is commonly used throughout South Africa. Numerous cross sections were created throughout the contributing area (Figure 5). Ineffective areas/hydraulic structures were digitized and included in the model. Land use coverage was used to determine the Manning's n-values in a GIS platform. Each cross section may have had numerous values on either side of the channel depending on the site characteristics. Manning's N-values were obtained from the HEC-RAS Hydraulic Reference Manual (2010) for the channel areas (a value of between 0.03 and 0.04 was used depending on the presence or absence of rock features and debris). Design flood values were used as an input for the relevant reaches.

Given the slope of the catchment and the distance to downstream hydrological infrastructure, no inundation within the study site would occur from external features on the watercourse. As such, Normal Depth was selected for the reach boundary conditions. The slope of the channel was used as the value for the backwater calculation of the initial condition. Some inundation structures were included in the cross sections where there were structures present (Figure 5).

3.7 Flood Line Determination for Minor Channels

As HEC-RAS and HEC-geoRAS are highly sensitive to the resolution of the terrain data used in the model, small non-perennial channels such as drainage lines are often not captured within the model. In most cases the flood output is not required for such channels as the flood generated would be negligible. However, it is good practice to ensure that all channels or drainage lines are adequately covered. As such, the author has developed a simple model to generate a flood depth through GIS. The model considers the flood generated for nearby smaller catchments and applies and area weighted correction. The model generates a flood height based on this estimation within the existing terrain model. Figure 6 provides a schematic of this model.

Figure 6 GIS model for flood generation in small channels

4. LIMITATIONS AND ASSUMPTIONS

In order to apply generalized and often rigid design methods or techniques to natural, dynamic environments, a number of assumptions are made. Furthermore, a number of limitations exist when assessing such complex hydrological systems. The following constraints may have affected this assessment:

- Manning's n values (the channels roughness coefficient) was estimated. However, n- values in areas outside of the study area were estimated using a desktop approach due to the extent of the catchment.
- 0.5 & 2 meter contour interval data and Digital Elevation Models (DEMs) were used in the design flood estimation (development of the elevation model). However, outside of the immediate study area, the 2 meter contours were used. Given the flood proposed, this resolution was considered to be of sufficient accuracy for the flood line determination.
- Given the setting of the site (low flow during the site visit) it was difficult to determine which channels would be fully active in a flood and which are remnant channels which have since been bypassed.
 HEC-geoRAS and HEC-RAS models cannot be used to a very high level of accuracy on smaller nonperennial systems as they are usually used on larger catchment areas.
- There was little to no data on flows out of the system. The catchment is very small and the watercourse associated with the site has been transformed.

5. RESULTS AND DISCUSSION

A detailed desktop assessment was undertaken for the site. This was the point of departure for the calculation of design flood volumes. These adopted values were then used in the HEC-RAS and HEC-geoRAS models to route this flood event through the channel.

5.1 Desktop Hydrological Assessment

A detailed assessment of the climate was undertaken. Rainfall stations were considered based on their proximity to the site (contributing catchment), altitude and length/reliability of the data record. The long-term mean annual rainfall of the site that was used in the design was 853 mm (Figure 7).

Table 3 Comparison of values from some of the rainfall stations that were assessed during the data analysis									
Station No.	Estimated	Observed	Years	Reliable	Patched	Altitude	Station Name		
	MAP (mm)	MAP (mm)				(m)			
0239133W	1054	1051	112	57.4	46.5	1443	Vaucluse		
0209296W	756	756	42	60.0	35.0	1196	Oxton		
0239097A	952	946	113	61.5	37.4	1579	Elandshoek		
0239518W	763	758	107	39.9	59.2	816	Edendale		
0239577W	891	885	107	41.1	58.0	754	Pietermaritzburg (PUR)		
0239196U	1084	1084	9	92.1	0	978	Henley Dam		

The data obtained from the nearby gauging stations (as indicated in Figure 8) indicated that overtopping was present throughout all of the gauging stations analyzed. These stations would have been used to validate sections of the flood output. However, due to the poor quality of the observations, design rainfall was utilized.

Of importance to note, the key event in 1984 and 1987 were not captured by these gauges. Station U2H057 could be used as a paired comparison if it had good quality data.

5.2 Allowable Abstractions and Water Registration

Quaternary Catchment (QC) site: U20J (uMgeni/uMsunduzi). According to GN 538 (2016), the General Authorization (GA) limits for this QC are as follows-

- Abstraction of surface water: 2 000 m³ / year @ 1 l/s from throughout the year
- Storage of water: 2 000 m³
- Groundwater abstraction: 275 m³/ha/year (allowed under GA).

These limits show that this catchment area is water limited and restricted water use applies.

5.3 Catchment

Contour lines (0.5 & 2 meter) were used to calculate the slope of each of the banks. These were further improved through height measurements taken on-site. The soils and geology were obtained from GIS layers obtained from the Soil Science department at the University of KwaZulu-Natal (UKZN). Various vegetation databases were used to determine the likely or expected vegetation types (Mucina & Rutherford, 2006; Scott-Shaw & Escott, 2011). A number of recognized databases were utilized in achieving a comprehensive review, and allowing any regional or provincial conservation and biodiversity concerns to be highlighted.

This site is dominated by Ngongoni veld (SVs 4, Mucina and Rutherford, 2006). This occurs within the subescarpment savanna biome. The desktop analysis revealed that the area is largely transformed, with the possibility for some flagged fauna and flora (e.g. red data species and endangered wildlife) being found from the C-plan, SEA and MINSET databases. However, this does not necessarily mean that rare or endangered species will occur in the area of interest. The following information was collected for the vegetation unit SVs 4 (Mucina & Rutherford, 2006; Scott-Shaw & Escott, 2011):

- Undulating plains and hilly landscape mainly associated with drier coast hinterland valleys in the rainshadow of the rain-bearing frontal weather systems from the east coast.
- Sour sparse wiry grassland dominated by unpalatable Ngongoni grass (Aristida junciformis) with this monodominance associated with low species diversity.
- In good condition dominated by Themeda triandra and Tristachya leucothrix.
- Wooded areas are found in valleys at lower altitudes, where this vegetation unit grades into KwaZulu-Natal Hinterland Thornveld and Bisho Thornveld.
- Termitaria support bush clumps with Acacia species, Cussonia spicata, Ehretia rigida, Grewia occidentalis and Coddia rudis.

Large patches of alien invaders were noted as well as subsistence farming, surrounded by industry and infrastructure on the opposite banks. Dumping was observed along the riparian banks.

Land Cover	Pre-development Area (ha)	Pre- development Percentage	Post- development Area (ha)	Post- development Percentage
Buildings	68.35	6.80	70.2	6.99
Cultivated commercial annual crops non-pivot	4.30	0.43	4.30	0.43
Degraded	0.28	0.03	0.28	0.03
Grasslands	368.85	36.72	367	36.54
Indigenous Forest	0.18	0.02	0.18	0.02
Low shrubland	1.76	0.18	1.76	0.18
Plantations / Woodlots	3.28	0.33	3.28	0.33
Settlements	418.11	41.62	418.11	41.62
Thicket /Dense bush	118.31	11.78	118.31	11.78
Wetlands	17.60	1.75	17.60	1.75
Woodland/Open bush	3.48	0.35	3.48	0.35
Total	1004.51	100	1004.51	100

 Table 4
 Proposed land cover area for the contributing catchment area

Figure 10 Exaggerated (x3) Digital Elevation Model (DEM) of the catchment surrounding Woodburn Shopping Centre

5.4 Design Rainfall

Design rainfall differs from standard rainfall as it is rainfall associated with an events rainfall depth for a specified storm duration and a recurrence interval (frequency of occurrence). The design rainfall used is dependent on the method used to calculate the statistics. The Design Rainfall Estimation (DRE) tool which uses observed rainfall data was included for comparative purposes. The results of the design rainfall assessment have been provided in Annexure A. A summary of these results has been provided in Table 5.

Station Name & ID	Obs	Voors	Altitude			Desig	n Rainfa	all (mm))	
	MAP	reals	(m)	2	5	10	20	50	100	200
Allerton Vet - 0239604 W	1072	48	882	58.6	82.1	100.4	120.4	150.3	176.0	205.0

Table 5	Design rainfall	depth for the	nearest	reliable	rainfall station
10010 0	Boolginannan	000000000000000	11001.001	1011010101	an nan otation

The data from SAWS rainfall station 0239604 W (Allerton Vet) was used to estimate Intensity-Duration Frequency (IDF) curves for the site and are used as design inputs to calculate sizes of stormwater management infrastructure. Probability distributions were derived from 70 annual maximum daily rainfall depths. The annual maximum daily rainfall depths based on hydrological years (October to September) were analysed using Log-normal, Gumbel, General Extreme Value (GEV) and Log Pearson 3 statistical distributions.

5.5 Design Storm Determination

5.5.1 Storm Water Volumes

The storm water volumes were calculated for the contributing catchment of the Woodburn extension site as well as for the sub-catchments.

Table 6	Calculated peak runoff for the	e pre- and post-develo	opment state sub-catchr	iments for a 1:50 year retu	urn period using the SCS-
SA metho	bd	· · ·	-		

RP	State	Area (m²)	Peak Runoff (m ³ .s ⁻¹)	Discharge Depth (mm)	Attenuation Required (m ³)
	Pre-development	18 573	0.29	436	202
50 Year	Post-development	18 573	0.72	679	383

For the minor sub-catchments, it was calculated that 383 m³ of attenuation is required. It is assumed that the access roads that will be utilized will have open drains which are recessed into the ground. Dimensions were assumed as a typical road drain (1 meters in width and recessed below the level of the culvert / kerb by approximately 0.3 meters). Cut-off drains would be placed strategically and increased in high slope areas. Drains were assessed to determine if they could handle certain design events, the following calculation was used (SANRAL Drainage Manual 5th Edition).

5.5.2 Storm Water Management Structures

- All storm water discharge during construction is considered to be dirty water.
- As the development will be connected to municipal infrastructure, water from gutters and roads are considered to be clean water once the construction phase is complete and revegetation has occurred.
- All roofs must have gutters and downpipes.
- Storage tanks (JoJos) are encouraged to further attenuate peak events and recycle water on site.
- Sizing of drainage channels for each sub-catchment area was based on the South African SCS type 2 method (SANRAL, 2013).
- Cut-off drains as per the design recommendations must be installed to facilitate the control of surface water runoff velocities from roads.
- The lower lying areas on the property should be used to place the primary attenuation structure. The following is recommended:
 - o 400 mm Ø pipe be used;
 - o This would allow for 0.3 m³.s⁻¹ to be discharged.
- All of the proposed structures have been designed separately by RFJ & Associate engineers (see Figure 11).
- Clean stormwater will be strategically attenuated and discharged into the Foxhillspruit.

Figure 11 Storm water control infrastructure for the proposed Woodburn Mall expansion (RFJ & Associates)

5.6 Design Rainfall

Design rainfall differs from mean annual rainfall as it is rainfall associated with an events rainfall depth for a specified storm duration and a recurrence interval (frequency of occurrence). The design rainfall used is dependent on the method used to determine the peak discharge. The SCS-SA method use 1 day-rainfall for various return periods while the Rational and SDF Methods use rainfall intensity linked to the catchments Time of Concentration (Tc) and Storm Duration. The Design Rainfall Estimation (DRE) tool which uses observed rainfall data has been included for comparison.

The results of the design rainfall analysis are summarised below:

Deturn Deried		Design Rainfall	Depth (mm)	
Retuin Penod	SDF	DRE	SCS-SA (using DRE)	Rational
10 Year Return Period	61.3	78.8	84	93.0
50 Year Return Period	94.82	123.2	123	160.0
100 Year Return Period	109.35	161.1	143	199.0

Table 7 Comparison between the various one-day design rainfall estimation techniques available for the study site

5.7 Design Peak Discharge

The design runoff results obtained for the 1:20, 1:50 and 1:100 year flood events for the various river reaches are summarized in Table 7. The populated calculation sheets for the Rational, SDF and SCS methods can be seen in Annexure B, C & D. The high contrast in values is due to the catchment size limitations of the design approaches. It is expected by the authors that the estimates from the SCS-SA and SDF are unrealistic. This is likely due to build up nature of the catchment areas and rainfall value that may not be representative of the entire catchment (the area is known for localised storm events). Furthermore, the lack of vegetation and the presence of roads has resulted in a much shorter time of concentration than what would have occurred in past decades. The design values indicate that the larger design events were vastly different between models whereas the smaller more frequent events were similar between models. This is likely due to the recommended catchment areas that these models are designed for. Given the results, the rational model was considered to be the most appropriate model if design rainfall were to be used, based on the small catchment area.

Peak				Return Period			
Discharge (m ³ .s ⁻¹)	2	5	10	20	50	100	200
Rational	35.037	57.302	77.707	104.177	154.655	211.625	N/A
SCS-SA	13.6	24.8	34.0	45.5	63.0	79.0	N/A

Table 8 Adopted design peak discharge values (m³.s-1) run through HEC-RAS for the catchment area

5.8 Hydraulic Modelling

Various hydraulic models were produced in HEC-RAS and exported to HEC-geoRAS by importing river centreline, cross sections, water surfaces and flow data from GIS layers and the hydrologic model. This allowed for inundation mapping and flood line polygons to be generated. The water surface TIN was converted to a GRID, and then the actual elevation model was subtracted from the water surface grid. The area with positive results (meaning the water surface is higher than the terrain) illustrated the flood area, whereas the area with negative results illustrated the dry areas not inundated by the flood. Inundation can be seen at various locations such as around bends.

The 1:2, 1:5, 1:10, 1:20, 1:50, 1:100 and 1:200 year combined flood hydrograph showed a moderate time of concentration and a high combined peak. The 1:100 year flood extent (Figure 12) for the current state indicated that the low lying banks and some floodplain areas surrounding the site are within the flood extent. However, most of the erven area is not within the flood extent. The proposed development should take cognisance of likely flood areas. An additional risk assessment was undertaken. This shows that the flood extents that fall within the site boundary has a low velocity risk indicating minimal potential damage. As such, if a flood event were to occur, the site would be at low/minimal risk of damage but may be inundated with slow flowing water. This is largely due to the straight channel of the Foxhill Spruit and the artificial berm/retaining wall.

Figure 12 1:100 year flood extent for the Woodburn Shopping Centre Expansion site

Table 9	Intervention measures	per activity	at the pro	posed Woodburn	Mall Extension
---------	-----------------------	--------------	------------	----------------	----------------

Unit	Activity/Risk	Severity	Intervention
	•	•	Preliminary Stage
Access Roads	Route planning	Low	 Ensure watercourse areas are not disturbed/traversed; Ensure steep slopes are avoided where possible; Ensure existing roads are used where possible.
Platform Areas	Site planning	Low	 Ensure sites are flat; Ensure sites are away from watercourses; Ensure the bed rock is stable to avoid collapse
Dump/Spoil Site	Site planning	Low	 Ensure watercourse disturbance is kept to a minimum; Ensure steep slopes are avoided where possible.
			Construction Phase
Access Roads	Formalization of roads. Risk of erosion and sedimentation	Low	 Temporary slit traps in any development areas where the slope exceeds 12°, installed along contour. Slit traps should also be placed around the topsoil stockpiles to maintain the spoil for rehabilitation. Wre Mesh & Geotextile Fabre Wre Mesh & Geotextile Fabre 1800 mm Spacing 1800 mm Spacing 1800 mm Spacing 1900 mm Depth Storm water runoff be directed to the lower side of the roads. At this point it should then be collected in side drains and disposed of in designated places by means of suitable outlet structures (cut-off drains and rockeries) and berms. No dirty water must be directed into water courses. Read Reserve Area Overland Flow (Strumt Flow) (Strumt Flow)

Infrastructure Areas/Platforms	Contamination from construction activities. Risk of erosion and sedimentation	Moderate	 No dirty water must be directed into watercourses (i.e. water containing sediments from the cleared area). Dirty water must be directed into silt traps. Temporary silt traps and berms should be constructed around the footprint in areas exceeding 12° (see above). Regular maintenance of vehicles must be undertaken. Any oil spills must be immediately cleaned up.
Spoil Sites	Potential oil spills from vehicles and equipment. Risk of erosion and sedimentation	Moderate	 Drains and berms at concentration points to manage and divert surface flow/ runoff from spoil sites during construction. No dirty water must be directed into watercourses. Flows must be attenuated and subsequently directed towards natural flow paths. Effluent from construction staff must be treated on-site otherwise it should be removed from the site.
			Operation Phase
Access Roads	Operation of vehicles along roads. Potential erosion channels.	Low	 Undertake a periodic site inspection to verify and inspect the effectiveness and integrity of the storm water run-off control systems. Immediate rehabilitation should erosion occur. Temporary silt traps to continue for 1 year after closure in any areas where the slope exceeds 12° should vegetation not be fully established.
Infrastructure Areas/Platforms	Increased stormflow from surface Risk of erosion and sedimentation	Low	 Undertake a periodic site inspection to verify and inspect the effectiveness and integrity of the storm water run-off control systems. Immediate rehabilitation should erosion occur.
Spoil Sites/Remnant platforms	Continued disturbance of soil and vegetation from footprint.	Low	 Undertake a periodic site inspection to verify and inspect the effectiveness and integrity of the storm water run-off control systems. Immediate rehabilitation should erosion occur.

5.9 Potential Spill Scenarios

Due to the nature of the activities, there is a chance of potential spills occurring on site (equipment etc.). This is most likely during construction (building, cement mixing, machinery etc.). The potential spill scenarios are outlined as follows:

- 1. Spills and leaks from vehicles. Regular removal of spills and leaks should be undertaken on-site. Ecofriendly detergents should be used.
- 2. The potential for contamination from spoil sites, rubble and concrete.
- 3. A storm or flood event occurs during implementation, resulting in structures being exceeded. All activities should stop and a spill management plan be executed. Furthermore, erosion control actions should be initiated.

5.10 Mitigation Measures and Recommendations (Spill Management Plan)

The proposed Woodburn Shopping Centre Expansion development should employ best practise stormwater management practises, as outlined below –

- Implementation should take place during the dry season wherever possible. Activities should stop during heavy rains.
- Vegetation clearing should be limited as much as possible and plants rescued for rehabilitation.
- Directing clean stormwater towards natural drainage lines, contours and dispersing over grassed, flat areas (preferably the existing watercourses).
- Vehicles and equipment must be kept outside of watercourse buffers.
- Vehicles and equipment must be kept clean and serviced off site.
- Staff/workers on-site must be educated on identifying potential erosion areas and best practice guidelines.
- Energy dissipating measures with regards to stormwater management would be installed where necessary to prevent soil erosion.
- The engineer or contactor must ensure that only clean stormwater runoff enters the environment.
- Drainage should be controlled to ensure that runoff from the project area does not culminate in offsite pollution, flooding or result in any damage to properties downstream, of any stormwater discharge points.
- Infrastructure must have the following:
 - Completely lined storage infrastructure (concrete bunded area), with the capacity to contain 110% of the total amount of petrochemicals stored within a specific tank;
 - o Spills must be completely removed from the site;
 - Valves / taps to contain or release any spillage collected from storage tanks; and
 - Fire extinguisher equipment installed within each facility.

Furthermore, as guided by the DWS, the following soil erosion measures should be put into place -

- Erosion control measures should be put in place to minimize erosion along the construction/implementation areas. Extra precautions must be taken in areas where the soils are deemed to be highly erodible.
- Soil erosion onsite should be prevented at all times, i.e. post- construction activities.
- Erosion measures should be implemented in areas prone to erosion such as near water supply points, edges of slopes etc. These measures could include the use of sand bags, hessian sheets, retention or replacement of vegetation if applicable and in accordance with the EMPR and the biodiversity impact assessment.
- Where the land has been disturbed during implementation, it must be rehabilitated and re-vegetated back to its original state after completion.
- Stockpiling of soil or any other material used during the construction phase must not be allowed on or near slopes, near a watercourse or water body. This is to prevent pollution of the impediment of surface runoff (further details are provided in the EMPr).

In order to reduce the potential impact of spills on site the following must be adhered to:

- Emergency numbers are provided on site e.g. Spilltech, fire department, ambulance, etc.;
- Spill cleaning kits such as a Drizit kit are available on site;
- All chemicals on site are recorded in the inventory of hazardous substances;
- Equipment, machinery and vehicles are regularly checked and maintained in good order;
- Machinery and equipment maintenance is undertaken in designated areas;
- Drip trays are to be placed underneath machinery and equipment during maintenance;

In the instance of a spill on site the following procedure must be followed:

- 1. Locate the source of the spill;
- 2. Stop the spill and prevent further spreading;
- 3. The appropriate oil sponge, absorbent or spill kit (e.g. DriZit) can then be used to clean and remove the spilled substance(s);
- 4. Spills from trucks/tractors must be contained within a concreted site area and prevented from spreading;
- 5. Spilled petrochemicals can then be cleaned up and removed using the appropriate oil sponge, absorbent or spill kit (e.g. DriZit);
- 6. The spill must be reported to the site manager / supervisor and ECO;
- 7. Depending on the significance of the spill, the incident may also need to be reported to the DEDTEA and DWS.

5.11 Erosion Control Plan

There is an overlap between the storm water management and erosion control. The erosion control is particularly relevant during construction and at certain locations during operation. The removal of vegetation also leaves the site at a higher risk.

- Immediately rehabilitate eroded areas:
 - o Install protective structures, e.g. geotextiles;
 - o Plant indigenous grasses on any open areas;
 - o Ensure the slope remains gentle and stable;
 - o Use vegetation plugs, rock packs or gabions where erosion is visible;
 - o Immediately revegetate the area.
- Ensure that steeper areas are avoided and that the vegetation remains at these sites.
- Continual erosion monitoring should occur by a trained staff member.

The site should take into account the following erosion control mechanisms:

- Geotextiles;
- Gabion baskets;
- Soil binding chemicals;
- Hydroseeding techniques;
- Vegetation plugs;
- mulch

To ensure rehabilitation is effective, it is vital that the working area is managed correctly during the implementation phase. An important part of this management will be that careful preservation and management of soil stockpiles should be implemented from the start of the site. The following points have been provided for use with the rehabilitation actions:

- Top- and subsoil stockpiles (used for road levelling and bank lifting) must not be stockpiled within 100m or within the 1:100 year floodplain of a watercourse.
- Naturally occurring vegetation removed by site clearance operations may be grubbed in with the topsoil for stockpiling.
- The topsoil shall not be buried or rendered in any other way inappropriate for rehabilitation use.
- Topsoil stripping (in widening and new development areas) shall not occur in wet weather and during stripping and stockpiling, the topsoil shall not be subject to a compaction force greater than 1 500kg/m² and shall not be pushed for more than 50m.

- Topsoil shall also only be handled twice, once to strip and stockpile, and secondly to replace, level, shape and scarify if necessary.
- Top soil stockpiles must be protected against erosion and a record kept of all top soil quantities and should there be shortfalls of topsoil required for rehabilitation, adequate replacement material from commercial sources should be obtained as approved by the Engineer (preferably from areas identified with sourced excess topsoil).
- Equally, excess topsoil shall be landscaped and stabilized in accordance to the requirements of the Engineer and in consultation with the Contractor's Land Rehabilitation Specialist.
- Topsoil stockpiles should not be stockpiled for longer than 6 months. If this can't be avoided, the stockpiles will need to be enriched or upgraded prior to rehabilitation. The Contractor shall consult with the Engineer with regards to matching preconstruction conditions or existing adjacent conditions.
- All stockpiles left for extended periods of time shall be stabilized using approved vegetation cover or other erosion control measures.
- Any excess subsoil must be removed from the road fringe once back filling is completed, and spoiled at an agreed spoil site (spoil sites to be agreed between landowner, ECO and Engineer).

6. CONCLUSION

The results provided indicate that most of the two erven areas are outside of the 1:100 year flood extent. However, some of the lower lying areas (rugby fields and some parking areas) are within the flood extent. The flood risk in this area is low primarily due to flood attenuation by the landscape and the flow direction at this point. Additional measures should be taken to ensure that flows are managed within this area. Vegetated areas are encouraged to promote infiltration. The existing shopping centre has operated well at attenuating peak events.

The net discharge of water on the system would be similar to that of the pre-development state if Stormwater is accommodated on-site. The risk on downstream users would be low assuming that the development adopts best practice measures and discussed in Section 5.8.

The findings and recommendations are:

- 1. The nearby watercourses are in a modified condition due to significant historical modification. The surrounding areas should be vegetated to increase the roughness and improve the aesthetics at the site. This would assist in attenuating the flood within this ERF.
- 2. Some parking areas are within the flood extent but are of low risk.
- 3. A catchment delineation was undertaken. However, there is no catchment area outside of the expansion footprint as flow is already directed into drains.
- 4. Strict adherence to best practice guidelines, spill management and erosion control must be throughout operation of the development.
- 5. Regular maintenance of culverts/drains/gutters must be undertaken to ensure that the flood risk is not increased due to blockages by debris.
- 6. Stormwater (clean) will be attenuated) and discharged at strategic points into the Foxhillspruit canal to the pre-development state (natural).
- 7. Dirty water is isolated on the site (sumps & separators) and connected to municipal infrastructure and subsequently discharged.
- 8. The risk of the proposed development is low assuming adherence to mitigation measures. However, the risk should still be managed through appropriate storm water management and general maintenance.

7. REFERENCES

- ^{1.} Drainage Manual, The South African Roads Agency Limited (SANRAL), 6th edition, 2013
- ^{2.} Drainage Manual, The South African Roads Agency Limited (SANRAL), 5th edition, 2006
- ^{3.} Lynch, SD. 2003: Development of a Raster Database of Annual, Monthly and Daily Rainfall for Southern Africa, WRC Report No. 1156/1/03, Water Research Commision, Pretoria, RSA.
- 4. SCHULZE, RE. (2011) Atlas of Climate Change and the South African Agricultural Sector: A 2010 Perspective. Department of Agriculture, Forestry and Fisheries, Pretoria, RSA. pp 387.
- ^{5.} SCHULZE, RE. (2012) Climate Change and the South African Water Sector: Where from? Where now? Where to in future? University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa.
- ^{6.} US Army Corps of Engineers, HEC-GeoRAS version 4.3.93 for ArcGIS 9.3
- ^{7.} US Army Corps of Engineers, HEC-RAS version 4.1
- ^{8.} Visual SCS-SA, R.E. Schulze, E.J. Schmidt and J.C. Smithers, University of Natal

ANNEXURE A Design Rainfall Values

Coordinates: Latitude: 29 degrees 43 minutes; Longitude: 30 degreess 24 minutes

Design Rainfall in South Africa: Ver 3 (July 2012)

User selection has the following criteria:

Durations requested: 5 m, 10 m, 15 m, 30 m, 45 m, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 16 h, 20 h, 24 h, 1 d, 2 d, 3 d, 4 d, 5 d, 6 d, 7 d Return Periods requested: 2 yr, 5 yr, 10 yr, 20 yr, 50 yr, 100 yr, 200 yr Block Size requested: 0 minutes Data extracted from Daily Rainfall Estimate Database File The six closest stations are listed Station Name SAWS Distance Record Latitude Longitude MAP Altitude Duration Return Period (years) (km) (Years) (°) (') (°) (') (mm) (m) (m/h/d) 2 2L Number 2U 5 5L 5U 10 10L 10U 20 20L 20U 50 50L 50U 100 100L 100U 200 200L 200U UKULINGA AGR RES STA 0239700_A 5.4 33 29 40 30 24 714 866 1 d 54.1 53.3 54.6 78.8 77.8 79.3 99.4 97.5 101.2 123.2 118.8 127.6 161.1 152.7 172.3 195.8 183.8 215.2 236.9 219.4 267.8 2 d 69.8 68.6 711 101.4 100.1 102.2 127.9 124.7 130.9 158.7 151.9 166.2 207.9 192.5 226.0 253.3 228.2 285.4 307.3 267.2 360.1 3 d 80.2 78.5 81.8 116.7 115.0 117.9 147.4 143.2 150.8 182.8 174.0 192.3 239.3 218.6 264.5 291.4 259.0 333.0 353.3 302.0 419.3 88.5 125.1 123.2 126.3 156.9 152.5 161.2 193.4 184.3 203.6 251.4 230.1 276.3 304.3 270.5 345.9 366.8 313.5 434.1 4 d 86.7 85.0 5 d 91.8 90.0 93.6 130.8 129.0 132.2 162.8 158.2 166.6 198.8 189.3 208.7 254.8 234.4 278.6 305.2 272.5 344.8 363.7 313.5 424.2 6 d 95.7 94.1 97.3 135.2 133.3 136.5 166.9 162.6 170.9 202.6 193.9 212.2 257.7 237.4 280.1 306.6 274.9 344.4 363.2 314.4 420.6 141.5 172.2 168.0 176.2 207.9 198.9 217.2 262.8 243.3 284.1 311.2 280.4 347.8 367.1 320.5 422.7 7 d 100.2 98.6 101.9 140.2 138.4 THORNVILLE 0239676_S 5.7 28 29 46 30 23 845 853 49.0 48.2 49.4 71.3 70.5 71.8 90.0 88.3 91.7 111.6 107.6 115.6 145.9 138.3 156.0 177.3 166.5 194.9 214.6 1 d 198.7 242.5 2 d 61.3 60.2 62.4 89.0 87.8 89.7 112.3 109.4 114.9 139.2 133.2 145.8 182.4 168.9 198.3 222.2 200.2 250.4 269.6 234.5 316.0 3 d 71 0 70.4 733 104.6 103.1 105.6 132.1 128.3 135.2 163.9 156.0 172.4 214.5 195.9 237.1 261.2 232.1 298.5 316.7 270.7 375.9 110.1 108.5 111.1 138.1 134.2 141.9 170.3 162.2 179.3 221.3 202.6 243.2 267.9 238.1 304.5 322.9 276.0 382.1 4 d 76.3 74.8 77.9 115.2 113.6 116.4 143.3 139.3 146.7 175.0 166.7 183.8 224.4 206.4 245.3 268.8 239.9 303.6 320.3 276.1 373.5 5 d 79.2 82.4 80.8 6d 86.3 84.9 87.8 121.9 120.3 123.1 150.6 146.7 154.1 182.8 174.9 191.4 232.4 214.2 252.6 276.6 248.0 310.7 327.6 283.6 379.4 7 d 91.6 90.1 93.1 1281 1265 1294 1574 1536 1610 1900 1818 1985 2402 2224 2596 2845 2563 3179 3355 2930 3863 BAYNESFIELD ESTATES 0239585_A 8.0 65 29 45 51.0 52.3 74.5 75.9 95.2 93.4 97.0 118.0 113.8 122.2 154.3 146.2 165.0 187.5 176.1 206.1 30 20 829 838 1 d 51.8 75.4 226.9 210.2 256.5 94.2 93.0 95.0 118.9 115.8 121.7 147.4 141.1 154.4 193.2 178.8 210.0 235.3 212.0 265.2 285.5 248.3 334.6 2 d 64.9 63.7 66.1 3 d 733 71.8 74.8 106.7 105.2 107.8 134.8 130.9 137.9 167.2 159.1 175.9 218.9 199.9 241.9 266.5 236.8 304.5 323.1 276.1 383.5 4 d 78.4 76.9 80.0 113.1 111.4 $114.2 \quad 141.8 \quad 137.8 \quad 145.7 \quad 174.9 \quad 166.6 \quad 184.1 \quad 227.3 \quad 208.1 \quad 249.8 \quad 275.2$ 244.6 312.7 331.7 283.5 392.5 5 d 82.2 85.5 119.6 117.9 120.8 148.7 144.6 152.3 181.6 173.0 190.8 232.9 214.2 254.6 279.0 249.0 315.1 332.4 286.5 387.7 180.6 197.6 239.9 221.1 260.8 285.5 256.0 320.7 338.1 292.8 391.6 125.9 127.1 155.4 151.4 159.1 188.7 6 d 89.1 87.6 90.6 124.2 7 d 94.6 93.1 96.2 132.3 130.6 133.6 162.6 158.6 166.3 196.3 187.8 205.0 248.1 229.7 268.2 293.9 264.8 328.4 346.6 302.6 399.1 BAYNESEIELD ESTATE 0239585 W 9.7 71 29 45 30 19 917 841 1 d 51.8 51.0 52.3 75.4 74.5 75.9 95.2 93.4 96.9 118.0 113.7 122.2 154.2 146.2 164.9 187.4 176.0 206.0 226.8 210.1 256.3 91.9 93.8 117.4 114.4 120.2 145.7 139.4 152.5 190.9 176.7 207.4 232.5 209.5 262.0 282.1 245.3 330.6 2 d 63.0 93.1 64.1 65.3 3 d 72.5 71.0 73.9 1055 1040 1065 1332 1294 1363 1652 1573 1738 2163 1976 2391 2634 2341 3010 3193 2729 3790 76.1 79.3 112.0 110.4 113.0 140.5 136.5 144.3 173.2 165.0 182.3 225.1 206.1 247.4 272.5 242.2 309.7 328.5 280.7 388.7 4 d 77.6 119.4 147.0 142.9 150.5 179.5 171.0 188.5 230.1 211.6 251.6 275.6 5 d 82.9 81.3 84.5 118.1 116.5 246.1 311.4 328.5 283.1 383.1 124.3 122.6 125.5 153.5 149.5 157.1 186.3 178.3 195.1 236.9 218.3 257.5 281.9 252.8 316.7 333.9 289.1 386.7 6 d 88.0 86.5 89.5 7 d 93.5 92.0 95.1 130.8 129.1 132.1 160.7 156.8 164.4 194.0 185.7 202.7 245.2 227.1 265.1 290.5 261.7 324.6 342.6 299.1 394.4 COSMOORE, CATO RIDGE 0239855 A 9.7 33 29 45 30 29 769 777 1 d 60.2 59.3 60.7 87.6 86.6 88.2 110.6 108.5 112.7 137.1 132.2 142.0 179.3 169.9 191.7 217.9 204.6 239.5 263.6 244.2 298.0 2 d 76.3 74.9 77.7 110.8 109.3 111.7 139.7 136.2 143.0 173.3 165.9 181.5 227.1 210.2 246.9 276.6 249.3 311.8 335.7 291.9 393.4 122.8 121.0 124.0 155.0 150.6 158.7 192.3 183.1 202.3 251.8 230.0 278.2 306.6 272.4 350.3 371.6 317.7 441.2 3 d 82.6 86.0 84.4 4 d 89.6 87.8 91.4 129.2 127.3 130.4 162.0 157.5 166.5 199.7 190.3 210.3 259.7 237.7 285.4 314.3 279.4 357.2 378.9 323.8 448.3

5 d 94.0 92.1 95.8 133.9 132.1 135.3 166.6 162.0 170.6 203.5 193.8 213.7 260.9 239.9 285.2 312.5 279.0 353.0 372.4 321.0 434.3 96.8 100.2 139.1 137.2 140.4 171.8 167.3 175.8 208.5 199.5 218.3 265.1 244.3 288.1 315.4 282.9 354.4 373.6 323.5 432.7 6 d 98.5 101.1 104.5 143.8 141.9 145.2 176.6 172.3 180.7 213.2 204.0 222.7 269.5 249.6 291.4 319.2 287.7 356.8 376.5 328.8 433.5 7 d 102.8 UMLAAS ROAD 0240014_W 12.7 46 29 44 30 31 753 49.9 72.0 71.1 72.4 90.9 89.1 92.5 112.6 108.6 116.6 147.3 139.5 157.4 179.0 168.0 196.7 790 1 d 49.4 48.7 216.5 200.5 244.7 63.7 62.5 64.8 92.4 91.3 93.2 116.6 113.7 119.4 144.7 138.4 151.5 189.6 175.5 206.0 230.9 208.0 260.2 280.2 243.7 328.3 2 d 70.2 73.1 104.3 102.8 105.3 131.7 128.0 134.8 163.4 155.6 171.9 213.9 195.4 236.4 260.5 231.5 297.7 315.8 269.9 374.8 3 d 71.7 75.1 78.2 110.5 108.9 111.5 138.6 134.7 142.4 170.9 162.8 179.9 222.1 203.3 244.1 268.8 239.0 305.5 324.1 277.0 383.5 4 d 76.6 85.3 119.2 117.6 120.5 148.3 144.2 151.9 181.2 172.5 190.3 232.3 213.6 253.9 278.2 248.3 314.3 331.5 285.8 386.6 5 d 82.0 83.6

87.0 90.0 125.0 123.3 126.2 154.3 150.3 157.9 187.3 179.2 196.1 238.2 219.5 258.9 283.4 254.1 318.4 335.7 290.6 388.8

91.5 94.6 130.1 128.4 131.3 159.8 155.9 163.5 192.9 184.6 201.5 243.9 225.8 263.6 288.8 260.2 322.8 340.6 297.4 392.2

Gridded values of all points within the specified block

Latitude Longitude MAP Altitude Duration Return Period (years)

6d 885

7 d 93.0

(°) (°) (°) (°) (mm) (m/h/d) 2 2L 2U 5 5L 5U 10 10L 10U 20 20L 20U 50 50L 50U 100 100L 100U 200 200L 200U

10.3 22.0 20.4 12.9 28.1 25.2 15.7 35.4 33.0 20.2 47.8 29 43 30 24 785 882 5 m 11.1 7.0 15.1 16.1 40.1 24.3 59.7 48.5 29.0 74.3 27.5 18.8 34.0 23.0 45.8 44.5 29.5 77.2 10 m 14.9 10.3 19.6 21.8 15.0 28.4 36.3 61.8 54.1 35.5 65.5 42.4 96.1 15 m 17.8 12.9 42.2 53.3 53.1 71.9 64.5 44.4 89.8 22.8 25.9 18.8 33.1 32.7 23.5 40.6 28.7 36.9 78.0 53.0 111.7 30 m 22.4 28.3 32.7 24.3 41.0 41.3 30.4 52.4 51.1 37.1 66.1 66.9 47.6 89.2 81.3 57.4 111.4 98.3 68.5 138.6 16.6 45 m 25.7 19.3 32.1 37.4 28.2 46.6 47.2 35.4 59.5 58.6 43.1 75.0 76.6 55.4 101.2 93.1 66.7 126.4 112.6 79.6 157.3 1 h 28.3 21.5 35.1 41.2 31.4 50.9 52.0 39.3 65.0 64.5 47.9 82.0 84.3 61.6 110.7 102.4 74.2 138.2 123.9 88.5 172.0 57.8 59.5 45.7 73.8 73.8 55.7 93.0 96.5 71.6 125.5 117.3 86.2 156.8 141.9 102.9 195.2 1.5 h 32.4 25.0 39.8 47.2 36.5 2 h 35.7 27.8 43.5 51.9 40.6 63.2 65.5 50.9 80.7 81.2 62.0 101.7 106.2 79.6 137.3 129.1 95.9 171.5 156.2 114.4 213.4 4 h 414 32.9 49.8 60.3 48.1 72.3 76.1 60.3 92.4 94.3 73.4 116.5 123.3 94.3 157.2 149.9 113.6 196.4 181.4 135.6 244.4 66.5 100.0 102.9 81.0 126.1 134.6 104.2 170.2 163.6 125.4 212.6 197.9 149.7 264.5 6 h 45.2 36.3 53.9 65.8 53.1 78.3 83.1 8 h 48.1 39.0 57.0 70.0 57.0 82.8 88.4 71.4 105.8 109.5 87.0 133.4 143.2 111.7 180.0 174.0 134.6 224.9 210.6 160.6 279.8 50.4 41.2 59.6 75.4 110.5 114.9 91.8 139.3 150.3 118.0 188.0 182.6 142.1 234.9 221.0 169.6 292.3 10 h 73.5 60.1 86.5 92.7 12 h 52.5 43.0 61.7 76.4 62.9 89.7 96.4 78.8 114.5 119.5 96.0 144.4 156.3 123.4 194.9 189.9 148.6 243.4 229.8 177.3 302.9 55.8 46.2 65.3 81.3 67.5 94.9 102.6 84.6 121.1 127.2 103.0 152.7 166.3 132.4 206.1 202.1 159.4 257.5 244.5 190.2 320.4 16 h 58.6 48.8 68.2 85.3 71.3 99.1 107.7 89.3 126.5 133.4 108.8 159.5 174.5 139.8 215.3 212.0 168.3 269.0 256.6 200.9 334.7 20 h 70.7 102.7 112.0 93.4 131.1 138.8 113.7 165.3 181.5 146.2 223.1 220.5 176.0 278.7 266.8 210.1 346.8 24 h 60.9 51.0 88.7 74.5 75.3 63.2 87.1 95.0 79.2 111.2 117.7 96.5 140.2 153.9 124.0 189.3 187.1 149.3 236.4 226.4 178.2 294.2 1 d 51.7 43.3 60.0 2 d 65.6 58.6 72.2 95.5 85.6 104.9 120.6 107.3 134.0 149.4 130.7 168.9 195.4 167.9 227.9 237.5 202.2 284.8 287.3 241.3 354.3 3 d 75.4 70.0 80.5 109.8 102.2 116.9 138.6 128.1 149.4 171.8 156.1 188.3 224.7 200.5 254.1 273.0 241.5 317.5 330.4 288.2 395.0 108.8 128.2 149.9 136.4 163.8 185.8 166.1 206.4 243.0 213.5 278.6 295.3 257.1 348.1 357.3 306.8 433.1 4 d 81.6 74.5 88.3 118.8 126.3 114.2 137.7 159.4 143.2 175.9 197.5 174.4 221.7 258.3 224.1 299.3 313.9 269.9 373.8 379.8 322.1 465.2 5 d 86.7 78.2 94.8 91.1 81.4 100.5 132.7 118.9 146.0 167.5 149.0 186.4 207.6 181.5 235.0 271.5 233.2 317.2 329.9 280.8 396.3 399.2 335.2 493.1 6 d 7 d 95.0 84.1 105.6 138.4 122.9 153.4 174.7 154.1 195.9 216.5 187.7 246.9 283.1 241.2 333.3 344.1 290.4 416.3 416.3 346.6 518.1

ANNEXURE B Rational Method

Description of Catchment	Woodburn Shopping Centr	e Expansi	on					
River detail	Foxhill Spruit							
Calculated by	BCSS				Date		14/04/20)22
	Ph	ysical chai	racteristics	[Rainfall		[
Size of catchment (A)			10	km²	Region			
Longest Watercourse			6	km	Area	Distributio	n Factors	
Average slope (S _{av})			0.02	m/m	Rural (α)	Urbar	η (β)	Lakes(γ)
Dolomite Area (D _%)			0	%	0.5	0.	5	0
Mean Annual Rainfall (MAR)			750	mm				
Catchment Characteristics		Flat/p	ermeable	%				
r - look up from Table 3C.3		Med	ium grass cover	0.4				
	Rural (1)					Urban (2	2)	
Surface Slope	%	Factor	Cs	Descriptio	n	%	Facto r	C ₂
Vleis and Pans	5	0.05	0.003	Lawns				
Flat Areas	25	0.11	0.028	Sandy, flat	(<2%)		0.075	-
Hilly	60	0.2	0.120	Sandy, stee	ep (>7%)		0.175	-
Steep Areas	10	0.3	0.030	Heavy soil,	flat (<2%)	25	0.15	0.038
Total	100	-	0.180	Heavy soil,	steep (>7%)		0.3	-
Permeability	%	Factor	Cp	Residentia	I Areas			
Very Permeable	10	0.05	0.005	Houses		55	0.4	0.220
Permeable	50	0.1	0.050	Flats			0.6	-
Semi-permeable	30	0.2	0.060	Industry				
Impermeable	10	0.3	0.030	Light indust	try		0.65	-
Total	100	-	0.145	Heavy Indu	istry		0.75	-
Vegetation	%	Factor	Cv	Business				
Thick bush and plantation	20	0.05	0.010	City Centre	1		0.825	-
Light bush and farm-lands	50	0.15	0.075	Suburban			0.6	-
Grasslands	25	0.25	0.063	Streets		20	0.825	0.165
No Vegetation	5	0.3	0.015	Maximum f	lood		1.00	-
Total	100	-	0.163	Total		100	-	0.423
Time of concentration (T _c)	Defined Water	course		Notes:				
Overland flow	Defined water	course		Pre-develo	pment Run-off			
0.46	$7 - (0.071^2)^{0.38}$	5	-			Latitude:		28°42′
$T_{c} = 0.604 \left \frac{rL}{\sqrt{rL}} \right $	$T_{c} = \left[\frac{0.8 / L^{-1}}{1.000 L^{-1}} \right]$			Tc =		e:		32°02′
$\left(\sqrt{S_{av}}\right)$	$(1000 S_{av})$			1.188488 07				
2.3 Hour		1.2	Hours					
		Run-off co	efficient	<u> </u>				
Return period (years), T		2	5	10	20	50	100	Max
Run-off coefficient, C_1		0.488	0.488	0.488	0.488	0.488	0.488	0.4875
Adjusted for dolomitic areas,							0.407	
C_{1D}		0.4875	0.4875	0.4875	0.4875	0.4875	0.487 5	0.4875
$(- C_1(1-D_\%)+C_1D_\%)(\Sigma(D_{factor} \times C_s\%))$)) ation.							
F _t	2	0.5	0.55	0.6	0.67	0.83	1	1
Adjusted run-off coefficient,		0.24 <u>37</u> 5	0.268 <u>12</u> 5	0.2925	0.326625	0.40462 5	0.487 5	0.4875

$(=C_{1D} \times F_t)$							
Combined run-off coefficient C_T (= $\alpha C_{1T} + \beta C_2 + \gamma C_3$)	0.3331 25	0.34531 25	0.3575	0.3745625	0.41356 25	0.455	0.455
	Rainf	all					
Return period (years), T	2	5	10	20	50	100	Max
Point Rainfall (mm), P _T	45.0	71.0	93.0	119.0	160.0	199.0	
Point Intensity (mm/hour), P _{iT} (=P _T /T _C)	37.9	59.7	78.3	100.1	134.6	167.4	0.0
Area Reduction Factor (%), ARF _T	100	100	100	100	100	100	100
Average Intensity (mm/hour),							
IT	37.9	59.7	78.3	100.1	134.6	167.4	0.0
$(= P_{iT} \times ARF_T)$							
Return period (years), T	2	5	10	20	50	100	Max
Peak flow (m³/s),	35.037	57.302	77.707	104.177	154.655	211.6 25	0.000

ANNEXURE C

SDF Method

DDOLLEY !!! M()		: Foxhi	.11	hopping	Contro			
RUN NO		: 1	iburn 5	hiopping	CENTLE			
TOTAL CATCHMENT	AREA (km^2)	: 10.0	0					
STORM INTENSITY	DISTRIBUTION TYP	E: 3 · 1/7	,					
COEFFICIENT OF I	NITIAL ABSTRACTI	. 1.47 ON: 0.10)					
CURVE NUMBERS:	Initial	Final						
Sub-catchment	1 80	80.0						
Sub-catchment	2 /5 3 68	68.0						
RETURN PERIOD (Y	FARS)	2	5	1.0	20	50	100	200
DESIGN DAILY RAI	NFALL DEPTH (mm)	51	70	84	100	123	143	164
DESIGN STORMFLOW	DEPTH (mm)							
Sub-catchment	1	18.4	31.9	42.7	55.8	75.5	93.3	112.4
Sub-catchment Sub-catchment	2 3	14.2 9.6	25.9 19.0	35.6 27.1	47.6 37.3	65.9 53.5	82.6 68.5	100.7 85.1
TOTAL RUNOFF DEP	TH (mm)	15.6	27.7	37.7	50.0	68.6	85.6	104.0
DESIGN STORMFLOW	VOLUME							
(thousands m^3)	1	88 5	152 9	205 0	267 0	362 6	447 P	530 /
Sub-catchment	2	52.6	95.8	131.8	175.9	243.7	305.5	372.6
Sub-catchment	3	14.4	28.5	40.6	56.0	80.2	102.8	127.7
TOTAL STORMFLOW (millions m^3)	VOLUME	0.2	0.3	0.4	0.5	0.7	0.9	1.0
COMPUTED CURVE N	UMBER	76.7	76.6	76.6	76.5	76.5	76.4	76.4
PEAK DISCHARGE (m^3/s)	13.6	24.8	34.0	45.5	63.0	79.0	96.3
DESIGN RAINFALL STORM DISTRIBUTIO CURVE NUMBER (com LAG TIME (h) PEAK DISCHARGE (m	(mm) = 51 N TYPE = 3 puted) = 76.7 = 1.5 ^3/s) = 13.63	******	*****	*****	******	*****		
TTME	DT:	SCHARGE						
(minutes)	(cubic metres/s	, .						
	(cubic meereb/b)	ec)	(litre	s/sec)				
680.	0.003	ec)	(litre	s/sec)				
680. 696.	0.003	ec)	(litre 3 31	s/sec)				
680. 696. 712. 728	0.003 0.031 0.209 1.740	ec)	(litre 3 31 209	s/sec)				
680. 696. 712. 728. 744.	0.003 0.031 0.209 1.740 3.805	ec)	(litre 3 209 1740 3805	s/sec)				
680. 696. 712. 728. 744. 760.	0.003 0.031 0.209 1.740 3.805 6.110	ec)	(litre 3 209 1740 3805 6110	s/sec)				
680. 696. 712. 728. 744. 760. 776.	0.003 0.031 0.209 1.740 3.805 6.110 8.553	ec)	(litre 3 209 1740 3805 6110 8553	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392	ec)	(litre 3 209 1740 3805 6110 8553 11052	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631	ec)	(litre 3 209 1740 3805 6110 8553 11052 13392 13631	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160	ec)	(litre 3 31 209 1740 8553 11052 13392 13631 13060 12160	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855					
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 7170					
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 8748 7170 5737	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.252	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 87470 5737 4270	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 87170 5737 4270 2853 2813	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 7170 5737 4270 2853 2853 2853 2853	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 7170 5737 4270 2853 2213 1865 1630	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.220	ec)	(litre 3 31 209 1740 3805 6110 8553 11052 13392 13631 13060 12160 11070 9855 8548 7170 5737 4270 28513 28513 2851 630 1456 1630	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13922 13631 13060 12160 12160 12160 2853 8548 7170 2853 2213 1455 1630 1456 1320	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13922 13631 13060 12160 12160 12160 2853 8548 7170 2853 2213 1456 1630 1456 1320 12100 1118	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 2.455 1.041	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13922 13631 13060 12160 12160 12160 12160 2853 2213 1865 1630 1456 1320 1456 1320 1210 1118 1041	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.975	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13922 13631 13060 12160 12160 12160 12160 12160 2853 2213 1865 1630 1456 1320 1456 1320 1456 1320 1456 1320 1456 1630 1456 1320 1456 1630 1456 1700 1456 1700 1457 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1456 1400 1457 1400 1400 1400 1400 1400 1400 1400 140	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13922 13631 13060 12160 12160 12160 12160 12160 2853 8548 7170 2853 2213 1865 1630 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1630 1456 1707 1577 1630 1456 1630 1456 1630 1456 1630 1456 1630 1456 1630 1457 1630 1457 1630 1457 1630 1456 1630 1456 1456 1456 1456 1457 1457 1457 1457 1457 1457 1457 1457	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13922 13631 13060 12160 12160 12160 12160 12160 2853 8548 7170 2853 2213 1865 1630 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1457 140 140 140 140 140 140 140 140 140 140	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821 0.781	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13392 13631 13060 12160 12160 12160 12160 2853 2213 1865 1630 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1456 1456 1456 1456 1456 1456 1456	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821 0.781 0.745 0.745	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13392 13631 13060 12160 12160 12160 12160 2853 2213 1865 1630 1456 1320 1456 1320 1456 1320 1457 1630 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1456 1456 1456 1456 1456 1456 1456	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1226	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821 0.781 0.745 0.712 0.683	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13392 13631 13060 12160 12160 12160 12160 2853 2213 1865 1630 2853 2213 1865 1630 1456 1320 1210 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1320 1456 1456 1320 1456 1456 1456 1456 1456 1456 1456 1456	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1226. 1242.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821 0.781 0.745 0.712 0.683 0.655	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 13392 13631 13060 12160 12160 12160 2853 2213 1865 1630 2853 2213 1865 1630 1456 1320 1210 1145 1320 1210 1456 1320 1456 156 156 156 156 156 156 156 156 156 1	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1226. 1242. 1258.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821 0.781 0.745 0.712 0.683 0.655 0.631	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 133922 13631 13060 12160 12160 12160 2853 2213 1865 1630 2853 2213 1865 1630 1456 1320 1456 156 156 156 156 156 156 156 156 156 1	s/sec)				
680. 696. 712. 728. 744. 760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 162. 1178. 1194. 1226. 1242. 1258. 1274.	0.003 0.031 0.209 1.740 3.805 6.110 8.553 11.052 13.392 13.631 13.060 12.160 11.070 9.855 8.548 7.170 5.737 4.270 2.853 2.213 1.865 1.630 1.456 1.320 1.210 1.118 1.041 0.975 0.917 0.866 0.821 0.781 0.745 0.712 0.683 0.655 0.631 0.608	ec)	(litre 3 31 209 1740 38055 6110 8553 11052 133922 13631 13060 12160 12160 12160 12160 2853 2213 1865 1630 2853 2213 1865 1630 1210 1118 1046 1320 1210 1118 1046 1320 1216 8548 7170 8568 1320 1456 1535 1536 1536 1557 1556 1556 1557 1556 1557 1556 1557 1556 1557	s/sec)				

1322. 1338. 1354	0 = 4 0		
1338. 1354	0.548	548.	
1354	0.531	531.	
1001.	0.515	515.	
1370.	0.500	500.	
1386.	0.486	486.	
1403.	0.473	473.	
1419.	0.460	460.	
1435.	0.448	448.	
1451.	0.432	432.	
1467.	0.409	409.	
1483.	0.378	378.	
1499.	0.341	341.	
1515.	0.297	297.	
1531.	0.246	246.	
1547.	0.197	197.	
1563.	0.153	153.	
1579.	0.116	116.	
1595.	0.084	84.	
1611.	0.057	57.	
1627.	0.036	36.	
1643.	0.019	19.	
1659.	0.008	8.	
1676	0 002	2	
1070.	0.002	2.	
******************* RETURN PERIOD (yea DESIGN RAINFALL STORM DISTRIBUTION CURVE NUMBER (com LAG TIME (h) PEAK DISCHARGE (m ***********	<pre>************************************</pre>	**************************************	******
(minutes)	(cubic metres/sec)) (litres/sec)	
632.	0.001	1.	
648.	0.006	б.	
664.	0.024	24.	
680.	0.074	74.	
696.	0.206	206.	
712.	0.692	692.	
728.	3.654	3654.	
744.	7.511	7511.	
	11 848		
760.	11.747	11747.	
760. 776.	11.747 16.171	11747. 16171.	
760. 776. 792.	11.747 16.171 20.616	11747. 16171. 20616.	
760. 776. 792. 808.	11.747 16.171 20.616 24.634	11/47. 16171. 20616. 24634.	
760. 776. 792. 808. 824.	11.747 16.171 20.616 24.634 24.795	11/47. 16171. 20616. 24634. 24795.	
760. 776. 792. 808. 824. 840.	11.747 16.171 20.616 24.634 24.795 23.580	11747. 16171. 20616. 24634. 24795. 23580.	
760. 776. 792. 808. 824. 840. 857.	11.747 16.171 20.616 24.634 24.795 23.580 21.815	11/47. 16171. 20616. 24634. 24795. 23580. 21815.	
760. 776. 792. 808. 824. 840. 857. 873.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737.	
760. 776. 792. 808. 824. 840. 857. 873. 889	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151.	
760. 776. 792. 808. 824. 840. 857. 873. 899. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1693.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584.	
760. 776. 792. 808. 824. 840. 857. 873. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1490. 1407. 1333. 1267.	
760. 776. 792. 808. 824. 840. 857. 873. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1061. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1497. 1333. 1267. 1208. 1106. 1062.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1693. 1584. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021.	
760. 776. 792. 808. 824. 840. 857. 873. 873. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.949	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1497. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1226. 1242. 1258. 1274. 1290. 1306.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 916.	
760. 776. 792. 808. 824. 840. 857. 873. 873. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1693. 1584. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 916. 887.	
760. 776. 792. 808. 824. 840. 857. 873. 873. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.693 1.584 1.490 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 916. 859.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.693 1.584 1.490 1.693 1.584 1.490 1.693 1.555 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 916. 887. 859. 833.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 941. 887. 859. 833. 808.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1226. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354. 1370.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808 0.785	11/47. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 916. 887. 859. 833. 808. 785.	
760. 776. 792. 808. 824. 840. 857. 873. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354. 1370. 1386. 1403.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808 0.785 0.785 0.785	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 949. 916. 887. 859. 833. 808. 785. 764.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354. 1370. 1386. 1403.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.693 1.584 1.490 1.693 1.584 1.490 1.693 1.555 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808 0.785 0.764 0.742	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 949. 916. 887. 859. 833. 808. 785. 764. 743.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354. 1370. 1386. 1403.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808 0.785 0.764 0.743 0.724	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 949. 949. 949. 946. 887. 859. 833. 808. 785. 764. 724.	
760. 776. 792. 808. 824. 840. 857. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1226. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354. 1370. 1386. 1403. 1419.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.407 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808 0.785 0.764 0.743 0.724 0.697	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 916. 887. 859. 833. 808. 785. 764. 743. 724. 697.	
760. 776. 792. 808. 824. 840. 857. 873. 873. 889. 905. 921. 937. 953. 969. 985. 1001. 1017. 1033. 1049. 1065. 1081. 1097. 1113. 1130. 1146. 1162. 1178. 1194. 1210. 1226. 1242. 1258. 1274. 1290. 1306. 1322. 1338. 1354. 1370. 1386. 1403. 1419. 1455. 1451.	11.747 16.171 20.616 24.634 24.795 23.580 21.815 19.737 17.451 15.016 12.472 9.853 7.205 4.703 3.628 3.050 2.662 2.375 2.151 1.970 1.820 1.693 1.584 1.490 1.497 1.333 1.267 1.208 1.155 1.106 1.062 1.021 0.983 0.949 0.916 0.887 0.859 0.833 0.808 0.785 0.764 0.743 0.724 0.697 0.659	11747. 16171. 20616. 24634. 24795. 23580. 21815. 19737. 17451. 15016. 12472. 9853. 7205. 4703. 3628. 3050. 2662. 2375. 2151. 1970. 1820. 1693. 1584. 1490. 1407. 1333. 1267. 1208. 1155. 1106. 1062. 1021. 983. 949. 949. 949. 949. 916. 877. 859. 833. 808. 724. 659.	

1499.	0.550	550.	
1515.	0.478	478.	
1531.	0.396	396.	
1547.	0.317	317.	
1563.	0.247	247.	
1579.	0.187	187.	
1595.	0.135	135.	
1611.	0.092	92.	
1627.	0.057	57.	
1643.	0.031	31.	
1659.	0.013	13.	
1676.	0.003	3.	
*************	******	*******	* * * * * * * * *
RETURN PERIOD (ye	ears) = 10		
DESIGN RAINFALL	(mm) = 84		
STORM DISTRIBUTIO	DN TYPE = 3		
CURVE NUMBER (con	nputed) = 76.6		
LAG TIME (h)	= 1.5		
PEAK DISCHARGE (n	$1^{3}/8$ = 34.03		
	D. C.		
1.TWE	DISCHA	RGE	
(minutes)	(Cubic metres/sec)	(litres/sec)	
600	0 001	1	
600.	0.001	1.	
0⊥0. 620	0.005	э. 17	
032.	0.017	1 / .	
048.	0.045	45.	
004.	0.102	102.	
000.	0.21/	∠⊥/. /71	
020. 710	U.4/1 1 0F4	4/1.	
/12.	1.254	1254.	
120.	5.429	5429. 10772	
744.	10.772	10772.	
760.	16.595	16595.	
776.	22.635	22635.	
792.	28.653	28653.	
808.	33.995	33995.	
824.	34.029	34029.	
840.	32.241	32241.	
857.	29.730	29730.	
873.	26.811	26811.	
889.	23.624	23624.	
905.	20.249	20249.	
921.	10.738	10/38.	
937.	13.140	13140.	
953.	9.524	9524.	
969.	6.142	6142.	
985.	4.725	4/25.	
1001.	3.968	3968.	
1017.	3.460	3400.	
1033.	3.085	3065.	
1049.	2.793	2793.	
1005.	2.557	2557.	
1007	2.301	2301.	
1097.	2.190	2190.	
1120	1 021	1021	
1146	1 823	1823	
1162	1 727	1727	
1178	1 642	1642	
1194	1 565	1565	
1210.	1.495	1495.	
1226.	1.432	1432.	
1242.	1.374	1374.	
1258.	1.321	1321.	
1274.	1.272	1272.	
1290.	1.227	1227.	
1306.	1.186	1186.	
1322.	1.147	1147.	
1338.	1.110	1110.	
1354.	1.077	1077.	
1370.	1.045	1045.	
1386.	1.015	1015.	
1403.	0.987	987.	
1419.	0.961	961.	
1435.	0.936	936.	
1451.	0.901	901.	
1467.	0.852	852.	
1483.	0.788	788.	
1499.	0.710	710.	
1515.	0.618	618.	
1531.	0.512	512.	
1547.	0.410	410.	
1563.	0.320	320.	
1579.	0.241	2.41	
1595.	0.174	174.	
1611.	0.119	119.	
1627.	0.074	74.	
1643.	0.040	40.	

1676.	0.003	3.

RETURN PERIOD (yea	rs) = 20	
DESIGN RAINFALL	(mm) = 100	
CURVE NUMBER (COMP	11PE = 5	
LAC TIME (b)	- 1 E	
DEAK DISCUADCE (m^	= 1.5	
**************************************	3/5/ - IJ.IO	*****
TIME	DISC	HARGE
(minutes)	(cubic metres/sec	(litres/sec)
(((,
551.	0.000	0.
567.	0.001	1.
583.	0.006	б.
600.	0.018	18.
616.	0.042	42.
632.	0.084	84.
648.	0.157	157.
664.	0.279	279.
680.	0.492	492.
710	2 077	2077
728	2.077	2077.
744	14 913	14913
760	22 667	22667
776.	30.664	30664.
792.	38.572	38572.
808.	45.480	45480.
824.	45.308	45308.
840.	42.788	42788.
857.	39.344	39344.
873.	35.383	35383.
889.	31.085	31085.
905.	26.554	26554.
921.	21.859	21859.
957.	12 272	12272
955.	7 829	7829
985.	6.010	6010.
1001.	5.042	5042.
1017.	4.393	4393.
1033.	3.915	3915.
1049.	3.543	3543.
1065.	3.242	3242.
1081.	2.993	2993.
1097.	2.783	2783.
1113.	2.603	2603.
1146	2.440	2310.
1162	2.305	2187
1178.	2.078	2078.
1194.	1.980	1980.
1210.	1.892	1892.
1226.	1.812	1812.
1242.	1.738	1738.
1258.	1.671	1671.
1274.	1.609	1609.
1290.	1.552	1552.
1306.	1.499	1459.
1220	1 404	1400
1354	1 361	1361
1370.	1.321	1321.
1386.	1.283	1283.
1403.	1.247	1247.
1419.	1.214	1214.
1435.	1.182	1182.
1451.	1.138	1138.
1467.	1.076	1076.
1483.	0.996	996.
1499.	0.897	897.
1515.	0.781	/81. 647
1531.	0.647	517
1563.	0.404	404.
1579.	0.305	305.
1595.	0.220	220.
1611.	0.150	150.
1627.	0.094	94.
1643.	0.051	51.
1659.	0.021	21.
1676.	0.004	4.
and and an		
***************	****************	***************************************
DESIGN RAINEALL	$\pm 5 = 50$ (mm) = 103	
STOTON NATULATI	() = 123	

0.017

17.

1659.

STORM DISTRIBUTION TYPE CURVE NUMBER (computed) LAG TIME (h) PEAK DISCHARGE (m^3/s)	2 = 3 = 76.5 = 1.5 = 63.04	
***************************************	****	******
TIME (minutes) (cubi	DISCHARGE .c metres/sec)	(litres/sec)
503.	0.000	0.
519.	0.002	2.
551.	0.016	16.
567.	0.035	35.
583.	0.067	67.
600.	0.116	116.
632	0.190	296
648.	0.452	452.
664.	0.685	685.
680.	1.059	1059.
090. 712	⊥./44 3 533	⊥/44. 3533
728.	11.515	11515.
744.	21.451	21451.
760.	32.133	32133.
792	43.081 53.822	43081. 53822
808.	63.038	63038.
824.	62.483	62483.
840.	58.804	58804.
873.	48.338	48338.
889.	42.332	42332.
905.	36.029	36029.
921.	29.524	29524.
953.	16.333	16333.
969.	10.298	10298.
985.	7.886	7886.
1017	6.608 5 754	6608. 5754
1033.	5.125	5125.
1049.	4.636	4636.
1065.	4.241	4241.
1097	3.914 3.638	3914. 3638
1113.	3.402	3402.
1130.	3.196	3196.
1146.	3.016	3016.
1178.	2.850	2850.
1194.	2.586	2586.
1210.	2.470	2470.
1226.	2.365	2365.
1258.	2.181	2181.
1274.	2.099	2099.
1290.	2.025	2025.
1322.	1.891	1891.
1338.	1.830	1830.
1354.	1.774	1774.
1370.	1.722	1722.
1403.	1.626	1626.
1419.	1.582	1582.
1435.	1.540	1540.
1451. 1467.	1.402	1402.
1483.	1.297	1297.
1499.	1.168	1168.
1515.	1.017	1017.
1547.	0.674	674.
1563.	0.526	526.
1579.	0.397	397.
1595. 1611	0.287 0.195	287. 195
1627.	0.122	122.
1643.	0.066	66.
1659.	0.027	27.
10/0.	0.005	5.
* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * * * * * *
RETURN PERIOD (years)	= 100	
STORM DISTRIBUTION TYPE	= 143] = 3	
CURVE NUMBER (computed)	= 76.4	
LAG TIME (h)	= 1.5	
FEAR DISCHARGE (M.3/S)	- 19.02	

(minutes)	DISCHARGE (cubic metres/sec)	(litres/sec)	
471.	0.000	0.	
487.	0.003	3.	
503.	0.009	9.	
519.	0.021	21.	
535.	0.041	41.	
551.	0.074	74.	
567.	0.122	122.	
583.	0.190	190.	
600.	0.282	282.	
632	0.407	407. 576	
648	0 811	811	
664.	1.152	1152.	
680.	1.681	1681.	
696.	2.626	2626.	
712.	5.006	5006.	
728.	15.101	15101.	
744.	27.555	2/555.	
700.	54 494	54494	
792	67 771	67771	
808.	79.019	79019.	
824.	78.065	78065.	
840.	73.302	73302.	
857.	67.067	67067.	
873.	60.018	60018.	
889.	52.449	52449.	
905.	44.530	44530.	
921.	28 117	28117	
953.	19.927	19927.	
969.	12.464	12464.	
985.	9.530	9530.	
1001.	7.981	7981.	
1017.	6.946	6946.	
1033.	6.185	6185.	
1049.	5.593	5593.	
1081	5.115	5115. 4720	
1097	4 386	4386	
1113.	4.100	4100.	
1130.	3.852	3852.	
1146.	3.634	3634.	
1162.	3.441	3441.	
1178.	3.269	3269.	
1194.	3.115	3115.	
1226	2.975	2975.	
1242.	2.732	2732.	
1258.	2.626	2626.	
1274.	2.528	2528.	
1290.	2.437	2437.	
1306.	2.354	2354.	
1322.	2.276	2276.	
1354	2.203	2135	
1370.	2.072	2072.	
1386.	2.012	2012.	
1403.	1.956	1956.	
1419.	1.903	1903.	
1435.	1.853	1853.	
1451.	1.785	1785.	
1467.	1.687	1560	
1499	1 406	1406	
1515.	1.223	1223.	
1531.	1.013	1013.	
1547.	0.811	811.	
1563.	0.632	632.	
1579.	0.477	477.	
1595.	0.345	345.	
1611. 1627	U.235 0 146	235. 146	
1643	0.140	19 79	
1659.	0.033	33.	
1676.	0.006	6.	
*****	*****	* * * * * * * * * * * * * * * * * * * *	******
RETURN PERIOD ((years) = 200		
STORM DISTORMAL	$ (mm) = \pm 64 $		
CIEVE NIIMDED /-	1 = 100 min = 3		
LAG TIME (h)	= 1.5		
PEAK DISCHARGE	$(m^3/s) = 96.30$		
**************************************	**************************************	* * * * * * * * * * * * * * * * * * * *	******

(minutes)	(cubic metres/sec)	(litres/sec)
423.	0.000	0.
439.	0.001	1.
455.	0.004	4.
471.	0.011	11.
487.	0.023	23.
503.	0.045	45.
519.	0.078	78.
535.	0.126	126.
551.	0.190	190.
567.	0.275	275.
583.	0.384	384.
600.	0.524	524.
616.	0.706	706.
632.	0.946	946.
648.	1.272	1272.
664.	1.733	1733.
680.	2.440	2440.
696.	3.678	3678.
712.	6.721	6721.
728.	19.111	19111.
744.	34.287	34287.
760.	50.470	50470.
776.	66.930	66930.
792.	82.914	82914.
808.	96.305	96305.
824.	94.878	94878.
840.	88.919	88919.
857.	81.219	81219.
873.	72.562	72562.
889.	63.297	63297.
905.	53.628	53628.
921.	43.699	43699.
937.	33.658	33658.
953.	23.735	23735.
969.	14.747	14747.
985.	11.261	11261.
1001.	9.425	9425.
1017.	8.200	8200.
1033.	7.299	7299.
1049.	6.599	6599.
1065.	6.034	6034.
1081.	5.567	5567.
1112	5.1/3	51/3.
1120	4.835	4835.
1146	4.542	4542.
1140.	4.284	4284.
1170	4.057	4057.
1104	3.033	2671
1210	2 506	2506
1226	3 356	3356
12/2	2 219	2210
1258	3 093	3093
1274	2 978	2978
1290	2 871	2970.
1306	2 772	2772
1322	2 681	2681
1338.	2.595	2595.
1354.	2.515	2515.
1370	2 440	2440
1386.	2.370	2370.
1403.	2.303	2303.
1419.	2.241	2241.
1435.	2.182	2182.
1451.	2.101	2101.
1467.	1.986	1986.
1483.	1.837	1837.
1499.	1.655	1655.
1515.	1.440	1440.
1531.	1.193	1193.
1547.	0.954	954.
1563.	0.744	744.
1579.	0.562	562.
1595.	0.406	406.
1611.	0.276	276.
1627.	0.172	172.
1643.	0.093	93.
1659.	0.039	39.
1676.	0.008	8.