RLOOD ASSESSMENT\& STORM

WATER MANAGEMENTPLAN

FOR THE PROPO SED EXPANSION OF WOODBURN SHOPPING CENTRE IN

 PIEIERMARITBURG, MSUNDUZ LOCAL MUNICIPALTY, UMG UNGUNDLOVU DISTRICT, KWA-ZULU NATAL

Compiled by

Dr Bruce Sc ott-Shaw \& Andrew Boardman NatureSta mp (Pty) Ltd Tel 0783999139
Email bruce@na turestamp.com

Compiled for

J oleen Wilson Tel: 0781989118
Ema il: joleenwilson06@gmail.com

Table of Contents

Tables. 3
Figures 3
Annexures 3
Spec ia list Deta ils \& Dec la ration 4

1. INTRODUCTION 5
1.1 Project Background and Description of the Activity 5
1.2 Terms of reference 7
1.3 Gauged versusUngauged Catchments 7
2. STUDY SITE 8
3. METHODOLOGY 8
3.1 Site Visit 8
3.2 Critic al Catchment Delineation and River Reach Analysis 9
3.3 Design Storm Determina tion 10
3.4 Storm Water Design Principles 11
3.5 Design Flood Determination 12
3.6 Flood Line Determination 12
3.7 Flood Line Determination for Minor Channels 13
4. LIMTATIONS AND ASSUM PTIONS 13
5. RESULTS AND DISCUSSIO N 14
5.1 Desktop Hydrologic al Assessment 14
5.2 Allowable Abstractions and Water Registration 16
5.3 Catchment 16
5.4 Design Rainfall 19
5.5 Design Storm Determination. 19
5.5.1 Storm WaterVolumes 19
5.5.2 Storm Water Ma nagement Struc tures 19
5.6 Design Rainfall 21
5.7 Design Peak Disc harge 21
5.8 Hydraulic Modelling 21
5.9 Potential Spill Scenarios 25
5.10 Mitigation Measures and Recommendations (Spill Mana gement Plan) 25
5.11 Erosion Control Plan 26
6. CONCLUSION 27
7. REFERENCES 28

Tables

Table 1 Mean monthly rainfall and temperature observed at Scottsville (derived from historicaldata) 8
Table 2 Data type and source for the assessment 8
Table 3 Comparison of values from some of the rainfall stations that were assessed during the data a nalysis 14
Table 4 Proposed land cover area for the contributing catchment area 16
Table 5 Design rainfall depth for the nearest reliable rainfall station. 19
Table 6 Calculated peak runoff for the pre- and post-development state sub- catchments fora 1:50 year retum period using the SCS-SA method 19
Table 7 Comparison between the various one-day design rainfall estimation tec hniques a vailable for the study site 21
Table 8 Adopted design peak discharge values ($m^{3} . s-1$) run through HEC-RAS for the catchment area 21
Table 9 Intervention measures per activity at the proposed Woodbum Mall Extension... 23
Figures
Figure 1 The receiving environment of the Woodbum Shopping Centre Expansion area 5
Figure 2 Locality map of the Woodbum Shopping Centre Expansion 6
Figure 3 General site conditions and structures observed during the site visit 9
Figure 4 Soil Water Assessment Tool (SWAT) watershed delineation tool for sub-catchment delineation and stream network creation 10
Figure 5 Longitudinal profile and channel cross sections developed for a section of the Foxhillsp ruit 12
Figure 6 GIS model for flood generation in small channels 13
Figure 7 Long term synthesized annual rainfall values with the mean annual precipitation indicated in blue 14
Figure 8 Historical strea mflow from gauging stations within the catchment area of the Umsunduzi River. 15
Figure 9 Existing land use for the catchment area of Woodbum Shopping Centre Expansion 17
Figure 10 Exaggerated (x3) Digital Elevation Model (DEM) of the catchment surrounding Woodbum Shopping Centre 18
Figure 11 Storm water control infrastructure for the proposed Woodbum Mall expansion (RFJ \& Associates) 20
Figure 12 1:100 year flood extent for the Woodbum Shopping Centre Expansion site 22

Annexures

ANNEXURE A	Design Rainfall Estimation
ANNEXURE B	Rational Method
ANNEXURE C	SCSMethod

Spec ia list Details \& Dec laration

This report has been prepared in accordance with Section 13: General Requirements for Environmental Assessment Practitioners (EAPs) and Spec ia lists as well as per Appendix 6 of G NR 982 Environmental Impact Assessment Regulations and the National Environmental Management Act (NEMA, No. 107 of 1998 as amended 2017) and Govemment Notice 704 (GN 704). It has been prepared independently of influence or prejudice by any parties.

Document control					
Report title		Flood Assessment \& Storm Water Management Plan for the Proposed Expansion of Woodbum Shopping Centre in Pietermaritzburg, Msunduzi Loc al Munic ipa lity, Umgungundlovu District, Kwa-Zulu Natal			
Document ID		011222-001	Proj. number	J W-011222-001	
Client		Joleen Wilson/Bames Property	Client contact	0781989118	
Rev	Date	Rev details/status	Prepared by	Author	Approver
1	01/12/2022	Draft	BCSS	BCSS	BCSS
Key Words		Groundwater, Boreholes, Geology			
Approval					
Author signature		Sorr	Co-author signature		
Name		Bruce Scott-Shaw	Name		Boardman
Title		Director	Title		
Affiliations		SACNASP:118673			
© Copyright: NatureStamp (Pty) Ltd.					

1. INTRODUCTION

1.1 Project Background and Description of the Activity

NatureStamp has been contracted to conduct a flood assessment forthe extension of the existing Woodbum Shopping Centre. A development has been proposed on Sub 0 and Sub 5 of Erf 10278 of Pietermaritzburg. Given the proximity of the site to a stream/canal, a flood assessment is required. The proposed development is located on the following erven sites:

Sub Div	Farm No.	Town Name	Latitude	Longitude	Area (m²)	SG Code	Deed
5	10278	Pieterma nitzburg	30.3908	-29.6162	17824	NOFT02580000434600005	N/A
0	10278	Pieterma nitzburg	30.3911	-29.6106	64573	NOFT02580000434600000	N/A

Uninformed and poorly planned infrastructural developments in the vicinity of water resources, such as sensitive surface and groundwater, can rapidly degrade these resources. Thus, pre-development (orin some casespost development) assessments a re required to gain an understanding of the natural environment and guide the developmental process in order that site-specific mitigation measurescan be put in place.

The key requirements for this study a re as follows:

1. Desktop hydrologic al a ssessment.
2. Catc hment a nalysis.
3. Storm water management plan.
4. Design flood investigation.
5. Reporting (report \& maps in pdf format).

The receiving environment as of May 2022 can be seen in Figure 1 with the la yout of the site in Figure 2.

Figure 1 The receiving environment of the Woodbum Shopping Centre Expansion area

Figure 2 Locality map of the Woodbum Shopping Centre Expansion

1.2 Temms of reference

i. Flood Hydrology:

a. Hydraulic a nalysis, illustrated by the:

- Catchment delineation;
- Analysis or derivation of peak flow events (using observed flow or design methods);
- Compilation of the river reach model and flood line using HEC-RAS a nd HEC-geoRAS;
- Backwater calculations and findings;
- Determination of the flood risk and flood hazard throughout the study site; and
- Recommendation of mitigation options associated with the hydraulic analysis.
b. Consolidate results in a report with:
- 1:50 a nd 1:100 Flood line maps (drawing in pdfformat, flood lines plot in dwg/dxf format);
- A final flood line report; and
- Recommendation of mitigation optionsassociated with the hydraulic a nalysis.
ii. Stom Water Management Plan
- Site hydrologic al assessment, undertaken by the:
a. Analysis of surface a rea s of the site;
b. Analysis of sensitive area s on site;
c. Ana lysis of existing stom water structures on site; and
d. Detemination of a reas with clean and dirty water.
- Hydraulic design analysis, illustrated by the:
a. Determination of the design stom event (1:2, 1:10 \& 1:50 year retum period);
b. Determination of the capability of proposed structures; and
c. Recommendation of mitigation options and improvements.
- Erosion control plan
a. Compilation of erosion control mea sures;
b. Identification of high risk a reas, exclusion a reas and potential stockpile a reas;
c. Final erosion mitigation measures and rehabilitation objectives.
- Consolidate results in a report with:
a. Storm water maps;
b. CAD storm water dra wings; and
c. A storm water management plan.

1.3 Gauged versus Ungauged Catchments

Flood hydrology a ssessments can be limited if the information available is scant. In the Pietermaritzburg area (which, in recent years experienced a severe drought) most of the smaller tributaries (excluding large rivers) do not flow all year round as they have done in the past. This can be explained by changes in land use through intensification and increased areas under crops or commercial forests, an increase in water extraction (imgation, dams, industrial needs and human needs), cyclic drought and climate change. Much of the flow in these rivers is not always a c curately recorded by weirs. When a flood hydrology assessment is undertaken, depending on the data available, either gauged or ungauged catchments can be assessed. Gauged data are the most accurate approach assuming that the data quality is reliable and over a long period of time. In the absence of such data, an ungauged catchment is assessed using observed rainfall. This data (assuming it is of good quality) is used as an input to a rainfall-runoff model. The design flood is determined using a statistical analysis of the rainfall and the catchment characteristics.

In large catchment areas the antecedent moisture content is important for 1:100 year flood events. If the catc hment is very dry before such an event, damsmay fill up first from the flood waters and part of the rainfall may infiltrate, resulting in a reduced flow through the system, whereas a saturated catchment would result in a shorter lag time and a larger flow volume in the channel. This can lead to a difference in a simulated flood using design rainfall (ungauged) and a flood using observed streamflow (gauged). Furthermore, the large flood events are often poorly recorded in weirs due to poormaintenance and overtopping.

For the study a rea, strea mflow data was not available. As such, a detailed rainfall and flow assessment was undertaken to determine the design events.

2. STUDY STIE

The site is located within Quatemary Catchment U20J ; falling under the uMvoti to Mzimkulu Management Area (WMA) a nd the uMgeni waterboard (uMgeni Water). The proposed area sits on a modified tributary of the uMsunduze river, known as the Foxhillsp ruit canal.

The Foxhillspruit and the Msunduzi are highly degraded due to the presence of settlements, rubbish dumps and factories that have encroached along the edge and impacted upon of this watercourse. Given the vulnerable state of these watercourse systems, and their associated high population, all catchments areas contributing to this system should be given extra attention and precaution rega rding development proposals.

Rainfall in the region occurs in the summer months (mostly December to February), with a mean annual prec ipitation of 859 mm (observed from rainfall station 0239756 W). The reference potential evaporation ($E T_{0}$) is approximately 1667 mm (A-pan equivalent, after Schulze, 2011) and the mean annual evaporation is between $1300-1400 \mathrm{~mm}$, which exceeds the a nnual rainfall. This suggests a high evaporative demand and a water limited system. Summers are warm to hot and winters are cool. The mean annual temperature is approximately $21.5^{\circ} \mathrm{C}$ in summer and $13.8^{\circ} \mathrm{C}$ in the winter months (Table 1). The underlying geology of the site is sedimentary Ecca Shale and the soils overlain are sandy-clay-loam ranging from Mispah, Glenrosa to Oakleaf form in this partic ular area. Much of the soils identified on site were transported material a nd highly modified.

Table 1 Mean monthly rainfall and temperature observed at Scottsville (derived from historical data)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
Mean Rainfall (mm)	119	110	98	42	17	7	6	19	37	81	97	108	$\mathbf{7 5 6}$
Mean Temperature (9C)	21.5	21.6	21.0	18.5	16.0	13.7	13.8	15.3	17.3	18.0	19.2	20.8	$\mathbf{1 8 . 1}$

3. MEIHODOLOGY

The following methodology wasfollowed in orderto meet the objectives as detailed in the terms of reference. The assessment of these systems considered the following databases where relevant:

Table 2 Data type and source for the assessment

Data Type	Year	Source/Reference
Aerial Imagery	2016	SurveyorGeneral
1:50 000 Topographical	2011	SurveyorGeneral
2 m Contour	2010	SurveyorGeneral
River Shapefile	2011	EKZNW
Geology Shapefile	2011	Durban Geological Sheets/National Groundwater Archive
Land Cover	2014	EKZNW
Water Registration	2013	WARMS-DWS

*Data will be provided on request

3.1 Site Visit

A site visit was conducted by Bruce Scott-Shaw of NatureStamp on the May 2022. A pre-development state was assessed. The curent condition was assessed as follows-

- The vegetation characteristic s of the watercourse were assessed for the determination of the Manning's n-values;
- The presence and dimensions of a ny crossings, such as culverts and bridges, that would act as a ba mier to a flood event and that may be damaged during the occurrence of such an event were noted;
- The overall state of draina ge channels, strea ms a nd rivers wa s assessed;
- The slope of the study site as well asevidence of flood damage a nd erosion a round the site were noted;
- The state of existing gauging stations (nearby) was assessed to detemine if the structure is accurately recording strea mflow (e.g. evidence of under cutting ordamaged features); and
- The elevation at the water level and crossing level in order to verify contour data.

The waterc ourse systems were flowing at the time of the site visit. As a result, a full niver profile was undertaken. Depth poles were used to measure the depth of the channel where possible.

Figure 3 General site conditions and structures observed during the site visit

3.2 Critical Catchment Delineation and River Reach Analysis

The critical contributing catchment area was determined for use in both the watershed delineation tool and HEC-HMS and SWATmodels. The sub-c atc hments were delineated using the 2 m contour set provided by the topographic al survey as an input. This was used to create a Digital Elevation Model (DEM) that wasthen used asan input to the watershed tool (Figure 4).

Figure 4 Soil Water Assessment Tool (SWAT) watershed delineation tool for sub-catchment delineation and stream network creation

The pre-development conditions were a ssessed as follows -

- The vegetation and surface characteristics of the watercourse were assessed for the determination of the Manning's n-values;
- The presence and dimensions of any storm water structures, such as culverts, bridges, drains, berms and gutters that would divert flow during a storm event were noted;
- The overall state of drainage channels, streams a nd nea rby rivers was a ssessed;
- The slope of the study site as well as evidence of erosion a round the site were noted; and
- The elevation throughout the site in order to verify contour data.

In accordance with Govemment Notice 704 (GN 704) a nd Best Practice Guidelines (BPG), the ma in objectives of a SWMP were:

1. To accommodate post-development stom events;
2. To keep clean and dirty water separated;
3. To contain a ny dirty water within a system; and
4. To prevent conta mination of clean water.

A range of stom waterdesign eventswere consid ered. 2-metercontours obta ined from the SurveyorGeneral were obta ined and improved using a GPS. Rainfall data was extracted using the rainfall extraction utility tool (Kunz, 2003). Contributing catchment areas were calculated using the derived elevation model.

The critical contributing catchment area was determined for use in both the watershed delineation tool and HEC-HMS and SWATmodels. The sub-catchments were delineated using the $2 m$ contour set as an input. This was used to create a Digital Elevation Model (DEM) that was then used as an input to the watershed tool (Figure 4). Design rainfall depths using the Design Rainfall Estimation (DRE) tool was used for the nearest rainfall station.

3.3 Design Stom Determination

The peak flows for the 1:2, 1:5, 1:10, 1:50 a nd 1:100 storm events were calculated for the catchments using the SCS-SA method as outlined in the SANRALDraina ge Manual (6th Edition, 2013). The type of surface in the drainage basin is an important component in the design calculations. The SANRALRational Method becomes more accurate as the a mount of impervious surface, such as pavements a nd rooftops, increases. As a result, the Rational Method is most often used in urban and suburban areas (ODOTHydraulics Manual, 2014). The

Utility Programme forDrainage (Sinotech) was used to run the rational method, determine drainage grid and kerb drainage calculations.

It generally recognised that the 1:50 year retum design for a 30-minute stom event be used as the typical event to design for.

3.4 Storm Water Design Princ iples

The objective of the Stormwater Management Plan is to control runoff flows and prevent detrimental impacts on receiving waters, considering both the quality and quantity of the stormwater runoff. As the existing site has natural impervious areas, steep slopes and shallow soils, the velocity of stomwater runoff would be considered high. However, as the site is located near the catchment divide, there are little to no upper catc hment contributions.

Stormwater management design principles to be followed on site include:

- Clean water should be kept clean, as far as possible, a nd be routed to a natural watercourse by a system separate from the dirty water system and should be allowed to pass through to downstream users, while preventing or minimising the risk of spilla ge of clean water into dirty water systems.
- The establishment and maintenance of grass and plantsadjacent to newly constructed infrastructure and roads.
- Dirty water must be collected and contained in a system separate from the clean water system and the risk of spillage or seepage into clean water systems must be minimised. The containment of dirty or polluted water will minimize the impact on the surround ing water environment.
- The design standard stipulated by GN704 is not that a 1 in 50-year flood should be captured, but that the structure may not spill more than once every 50 years. Design storage volumes are a function of peak storage requirements that often correspond to abnomally wet conditions that continue for an extended period of time, and not to a specific flood event
- Hazardous or environmentally dangerous chemicals kept on site must be kept outside of the 1:100 yearflood line and watercourses or appropriately bunded.
- Regulations stipulate a clear hierarchy of water use. Firstly, recycle any captured dirty water and minimise the import and use of clean water resources. Should excess water be released from a dirty water area, it must be treated to a standard agreed to by the regulator, the Department of Water Affairs and Sanitation (DWS), a nd any plan to treat and release excess water must be approved and licensed.
- The SWMP must be susta inable over the life cycle of the development and over different hydrological cycles and must incorporate principles of risk ma na gement.
- Groundcover should be maintained during construction to ensure erosion protection.
- Flow concentration points should a void unstable soil a rea s and/ or stoc kpiles.
- Ensure aesthetic designs.

The above-mentioned principles are to be used as a conceptual stormwater management guide.
The Msunduzi Munic ipality recognises the following:

- The difference between the Pre and Post storm water flows would need to be calculated using the rational method.
- The difference would need to be stored on site and released at the pre-development flow.
- These calculations would be based on the following -
- 1: 50 year retum stom design.
- 30 minute storm (Hydrograph peaking at 15 minutes)
- Intensity of $165 \mathrm{~mm} / \mathrm{hr}$.
- "C" Factors: Pre-dev C factor $=0.35$ (for the entire site, in original undeveloped state).
- Post-dev C factorforlandscaped/grassed a reas $=0.45$
- Post-dev C factor for hardened surfaces $=0.85$

These calculations can be simplified to:

- $1 m^{3}$ to be attenuated for every $48 \mathrm{~m}^{2}$ of hardened surface.
- $1 m^{3}$ to be attenuated for every $242 \mathrm{~m}^{2}$ of soft / la ndsc aped surface.

3.5 Design Food Determination

The peak flows for the 1:10, 1:50 and 1:100 flood eventswere calculated for the catchments using the rational method, the SCS-SA model and the Standard Design Flood Method as outlined in the SANRAL Drainage Manual (2013). The 1:10 a nd 1:50 yearevents were included for comparative reasonseven though they were not a required output. The SCS-SA model is a hydrological stom event simulation model suitable ideally for application on catchments that have a contributing catchment of less than $30 \mathrm{~km}^{2}$. The model has been used widely both intemationally and nationally for the estimation of flood peak discharges and volume (Schulze et al., 1992). The type of surface in the drainage basin is also important. The Rational Method becomes more accurate as the a mount of impervious surface, such as pavements and rooftops, increases. As a result, the Rational Method is most often used in urban and suburban areas (ODOTHydraulics Manual, 2014).

3.6 Food Line Determination

Modelling of the flood lines was undertaken using the U.S. Army Corps of Engineers' HEC-RAS v5.05 programme, which is commonly used throughout South Africa. Numerous cross sections were created throughout the contributing a rea (Figure 5). Ineffec tive areas/hydraulic struc tureswere digitized and included in the model. Land use coverage was used to determine the Manning'sn-values in a GISplatform. Each cross section may have had numerous values on either side of the channel depending on the site characteristics. Manning's N -values were obta ined from the HEC-RAS Hydraulic Reference Manual (2010) for the channel areas (a value of between 0.03 and 0.04 was used depending on the presence or absence of rock features and debris). Design flood values were used as an input for the relevant reaches.

Given the slope of the catchment and the distance to downstream hydrological infra structure, no inundation within the study site would occur from extemal features on the watercourse. As such, Nomal Depth was selected for the reach boundary conditions. The slope of the channel was used as the value for the backwatercalculation of the initial condition. Some inundation structures were included in the cross sections where there were structures present (Figure 5).

Figure 5 Longitudinal profile and channel cross sectionsdeveloped fora section of the Foxhillspruit

3.7 Food Line Determination for Minor Channels

As HEC-RAS a nd HEC-geoRAS are highly sensitive to the resolution of the terrain data used in the model, small non-perennial channels such as drainage lines are often not captured within the model. In most cases the flood output is not required for such channels asthe flood generated would be negligible. However, it is good practice to ensure that all channels or drainage lines are adequately covered. As such, the author has developed a simple model to generate a flood depth through GIS. The model considers the flood generated for nearby smaller catchments and applies and area weighted correction. The model generates a flood height based on this estimation within the existing terrain model. Figure 6 provides a schematic of this model.

Figure 6 GIS model for flood generation in small channels

4. UMITATIONS AND ASSUMPIIONS

In orderto a pply generalized and often rigid design methodsortechniquesto natural, dynamic environments, a number of assumptions are made. Furthemore, a number of limitations exist when assessing such complex hydrologic al systems. The following constraints may have affected this a ssessment:

- Manning's n - values(the channels roughness coeffic ient) was estimated. However, n - values in a reas outside of the study area were estimated using a desktop approach due to the extent of the catchment.
- $\quad 0.5 \& 2$ meter contour interval data a nd Digital Elevation Models (DEMs) were used in the design flood estimation (development of the elevation model). However, outside of the immediate study a rea, the 2 meter contours were used. Given the flood proposed, this resolution was considered to be of suffic ient a c cura cy for the flood line determination.
- Given the setting of the site (low flow during the site visit) it was diffic ult to determine which channels would be fully active in a flood and which are remnant channels which have since been bypassed. HEC-geoRAS and HEC-RAS models cannot be used to a very high level of accuracy on smaller nonperennial systems as they are usually used on larger catchment a reas.
- There waslittle to no data on flowsout of the system. The catchment is very small a nd the watercourse associated with the site has been transformed.

5. RESULTS AND DISCUSSION

A detailed desktop assessment was undertaken for the site. This was the point of departure for the calculation of design flood volumes. These adopted values were then used in the HEC-RAS a nd HEC-geoRAS models to route this flood event through the channel.

5.1 Desktop Hydrological Assessment

A detailed assessment of the climate was undertaken. Rainfall stations were considered based on their proximity to the site (contributing catchment), altitude and length/reliability of the data record. The long-term mean a nnual rainfall of the site that was used in the design was 853 mm (Figure 7).

Station No.	$\begin{aligned} & \text { Estimated } \\ & \text { MAP (mm) } \end{aligned}$	Obsened MAP (mm)	Years	Reliable	Patched	Altitude (m)	Station Name
0239133W	1054	1051	112	57.4	46.5	1443	Vaucluse
0209296W	756	756	42	60.0	35.0	1196	Oxton
0239097A	952	946	113	61.5	37.4	1579	Elandshoek
0239518W	763	758	107	39.9	59.2	816	Edendale
0239577W	891	885	107	41.1	58.0	754	Pietermaritzburg (PUR)
0239196U	1084	1084	9	92.1	0	978	Henley Dam

Figure 7
Long term synthesized annual rainfall values with the mean annual precipitation indicated in blue

The data obtained from the nearby gauging stations (as indic ated in Figure 8) indicated that overtopping waspresent throughout all of the ga uging stationsa nalyzed. These stationswould have been used to validate sections of the flood output. However, due to the poorquality of the observations, design rainfall was utilized.

Of importance to note, the key event in 1984 and 1987 were not captured by these gauges. Station U2H057 could be used asa paired comparison if it had good quality data.

U2H011 (Henley Dam) Daily Average Flow

U2H057 (Masons Mill) Daily Average Flow

U2H058 (Slang Spruit) Daily Average Flow

Figure 8 Historical streamflow from gauging stations within the catchment area of the Umsunduzi River

5.2 Allowable Abstractions and Water Registration

Quatemary Catchment (QC) site: U20J (uMgeni/uMsunduzi). Ac cording to GN 538 (2016), the General Authorization (GA) limits for this QC are as follows-

- Abstraction of surface water: $2000 \mathrm{~m}^{3} /$ year @ $1 / / \mathrm{s}$ from throughout the year
- Storage of water: $2000 \mathrm{~m}^{3}$
- Ground water abstraction: 275 m³/ha/year (allowed under GA).

These limits show that this catc hment area is water limited and restric ted water use applies.

5.3 Catchment

Contour lines ($0.5 \& 2$ meter) were used to calculate the slope of each of the banks. These were further improved through height measurements taken on-site. The soils and geology were obta ined from GIS layers obtained from the Soil Science department at the University of KwaZulu-Natal (UKZN). Various vegetation databaseswere used to determine the likely orexpected vegetation types (Mucina \& Rutherford, 2006; ScottShaw \& Esc ott, 2011). A number of recognized databa seswere utilized in achieving a comprehensive review, and allowing any regional or provincial conservation and biodiversity concems to be highlighted.

This site is dominated by Ngongoni veld (SVs 4, Mucina and Rutherford, 2006). This occurs within the subescarpment savanna biome. The desktop analysis revealed that the area is largely transformed, with the possibility for some flagged fauna and flora (e.g. red data species and endangered wild life) being found from the C-plan, SEA and MINSET databases. However, this does not necessarily mean that rare or endangered species will occur in the area of interest. The following information was collected for the vegetation unit SVs 4 (Mucina \& Rutherford, 2006; Sc ott-Shaw \& Esc ott, 2011):

- Undulating plains and hilly landscape mainly associated with drier coast hinterland valleys in the rainshadow of the rain-bearing frontal weather systems from the east coast.
- Soursparse wiry grassla nd dominated by unpalatable Ngongoni grass (Aristida junc iformis) with thismonodomina nce associated with low species diversity.
- In good condition dominated by Themeda triandra and Tristachya leucothrix.
- Wooded areas are found in valleys at lower altitudes, where this vegetation unit grades into KwaZuluNatal Hinterland Thomveld and Bisho Thomveld.
- Termita ria support bush clumpswith Acacia species, Cussonia spicata, Ehretia rigida, Grewia occidentalis and Coddia rudis.

Large patches of alien invaders were noted as well as subsistence farming, surrounded by industry and infrastructure on the opposite banks. Dumping was observed along the riparian banks.

Table 4 Proposed land cover area for the contributing catchment area

Land Cover	Pre-development Area (ha)	Pre- development Percentage	Postdevelopment Area (ha)	Post development Percentage
Build ings	68.35	6.80	70.2	6.99
Cultivated commercial a nnual crops non-pivot	4.30	0.43	4.30	0.43
Degraded	0.28	0.03	0.28	0.03
Grasslands	368.85	36.72	367	36.54
Indigenous Forest	0.18	0.02	0.18	0.02
Low shrubland	1.76	0.18	1.76	0.18
Plantations/ Woodlots	3.28	0.33	3.28	0.33
Settlements	418.11	41.62	418.11	41.62
Thicket / Dense bush	118.31	11.78	118.31	11.78
Wetlands	17.60	1.75	17.60	1.75
Woodland/Open bush	3.48	0.35	3.48	0.35
Total	1004.51	100	1004.51	100

-Catchment Area (10.05 sqkm)
Land Use
Buildings

- Cultivated commercial annual crops non-pivot
- Degraded
- Grasslands
- Indigenous Forest
-Low shrubland
- Plantations / Woodlots
=Settlements
=Thicket/Dense bush
- Wetlands
-Woodland/Open bush

5.4 Design Rainfall

Design rainfall differs from standard rainfall as it is rainfall associated with an events rainfall depth for a specified stom duration and a recurrence interval (frequency of occurrence). The design rainfall used is dependent on the method used to calculate the statistics. The Design Rainfall Estimation (DRE) tool which uses observed rainfall data was included for comparative purposes. The results of the design rainfall assessment have been provided in Annexure A. A summary of these results has been provided in Table 5.

Table 5 Design rainfall depth for the nearest reliable rainfall station

Station Name \& ID	Obs MAP	Years	Altiturde (m)	Design Rainfall (mm)						
				2	5	10	20	50	100	200
Allerton Vet - 0239604 W	1072	48	882	58.6	82.1	100.4	120.4	150.3	176.0	205.0

The data from SAWS rainfall station 0239604 (Allerton Vet) was used to estimate Intensity-Duration Frequency (IDF) curves for the site and are used as design inputs to calculate sizes of stomwater management infrastructure. Probability distributions were derived from 70 a nnual maximum daily rainfall depths. The a nnual maximum da ily rainfall depths ba sed on hydrological years (Octoberto September) were analysed using Log-nomal, Gumbel, General Extreme Value (GEV) a nd Log Pearson 3 statistic al distributions.

5.5 Design Stom Determination

5.5.1 Storm Water Volumes

The stom water volumes were calculated for the contributing catchment of the Woodbum extension site as well as for the sub-catchments.

Table 6 Calculated peak runoff for the pre- and post-development state sub-catchments for a 1:50 year retum period using the SCSSA method

$\mathbf{R P}$	State	Area ($\left.\mathbf{m}^{\mathbf{2}}\right)$	Peak Runoff $\left(\mathbf{m}^{\mathbf{3}} \cdot \mathbf{s}^{\mathbf{1}}\right)$	Discharge Depth $\mathbf{(m m)}$	Attenuation Required $\left(\mathbf{m}^{\mathbf{3}}\right)$
$\mathbf{5 0}$ Year	Pre-development	18573	0.29	436	383
	Post-development	18573	0.72	679	

For the minor sub-c atc hments, it was calc ulated that $\mathbf{3 8 3} \mathbf{~ m}^{\mathbf{3}}$ of attenuation is required. It is assumed that the access roads that will be utilized will have open drains which are recessed into the ground. Dimensions were assumed as a typical road drain (1 meters in width and recessed below the level of the culvert / kerb by approximately 0.3 meters). Cut-off drains would be placed strategically and increased in high slope areas. Drains were assessed to determine if they could handle certain design events, the following calculation was used (SANRAL Drainage Manual 5th Edition).

5.5.2 Storm Water Ma na gement Structures

- All storm water discharge during construction is considered to be dirty water.
- As the development will be connected to municipal infrastructure, water from gutters and roads are considered to be clean water once the construction phase is complete and revegetation has occurred.
- All roofs must have gutters a nd downpipes.
- Storage tanks (J oJ os) are encouraged to further attenuate peak events and recycle water on site.
- Sizing of drainage channels for each sub-catchment area was based on the South African SCS type 2 method (SANRAL, 2013).
- Cut-off drains as per the design recommendations must be installed to facilitate the control of surface water runoff velocities from roads.
- The lower lying areas on the property should be used to place the primary attenuation structure. The following is recommended:
- $400 \mathrm{~mm} \varnothing$ pipe be used;
- This would allow for $0.3 \mathrm{~m}^{3} . \mathrm{s}^{-1}$ to be disc harged.
- All of the proposed structures have been designed separately by RFJ \& Associate engineers (see Figure 11).
- Clean stormwater will be strategic ally attenuated a nd disc harged into the Foxhillspruit.

Figure 11 Storm water control infrastructure for the proposed Woodbum Mall expansion (RFJ \& Associates)

5.6 Design Rainfall

Design rainfall differs from mean annual rainfall as it is rainfall associated with an events rainfall depth for a specified storm duration and a recurrence interval (frequency of occurrence). The design rainfall used is dependent on the method used to determine the peak discharge. The SCS-SA method use 1 day-rainfall for various retum periods while the Rational and SDF Methods use rainfall intensity linked to the catchments Time of Concentration (TC) and Storm Duration. The Design Rainfall Estimation (DRE) tool which uses observed rainfall data has been included for comparison.

The results of the design rainfall a nalysis are summa rised below:
Table 7 Comparison between the various one-day design rainfall estimation techniques available for the study site

Retum Period	Design Rainfall Depth (mm)			
	SDF	DRE	SCS-SA (using DRE)	Rational
10 Year Retum Period	61.3	78.8	84	93.0
50 Year Retum Period	94.82	123.2	123	160.0
100 Year Retum Period	109.35	161.1	143	199.0

5.7 Design Peak Discharge

The design runoff results obtained for the 1:20, 1:50 and 1:100 year flood events for the various river reaches are summarized in Table 7. The populated calculation sheets for the Rational, SDF and SCS methods can be seen in Annexure B, C \& D. The high contrast in values is due to the catchment size limitations of the design approaches. It is expected by the authors that the estimates from the SCS-SA and SDF are unrealistic. This is likely due to build up nature of the catchment areasand rainfall value that may not be representative of the entire catc hment (the area is known for loc a lised storm events). Furthermore, the lack of vegetation and the presence of roads has resulted in a much shorter time of concentration than what would have occurred in past decades. The design values indicate that the largerdesign events were vastly different between models whereasthe smallermore frequent events were similarbetween models. This is likely due to the recommended catchment areas that these models are designed for. Given the results, the rational model wasconsidered to be the most appropriate model if design rainfall were to be used, based on the small catchment area.

Table 8 Adopted design peak discharge values (m^{3}.s-1) run through HEC-RAS for the catchment area

Peak Discharge $\left(\mathrm{m}^{3} . \mathrm{s}^{1}\right)$	2	5	10	20	50	100	200
	35.037	57.302	77.707	104.177	154.655	211.625	N/A
SCS-SA	13.6	24.8	34.0	45.5	63.0	79.0	N/A

5.8 Hydraulic Modelling

Various hydraulic models were produced in HEC-RAS and exported to HEC-geoRAS by importing river centreline, cross sections, water surfaces and flow data from GIS layers and the hydrologic model. This allowed for inundation mapping and flood line polygons to be generated. The water surface TIN was converted to a GRID, and then the actual elevation model was subtracted from the water surface grid. The area with positive results (meaning the water surface is higher than the terain) illustrated the flood area, whereas the area with negative results illustrated the dry areas not inundated by the flood. Inundation can be seen at various loc ations such as a round bends.

The 1:2, $1: 5,1: 10,1: 20,1: 50,1: 100$ and 1:200 year combined flood hydrograph showed a moderate time of concentration and a high combined peak. The 1:100 year flood extent (Figure 12) for the current state indic ated that the low lying banks a nd some floodplain areas surrounding the site are within the flood extent. However, most of the enven area is not within the flood extent. The proposed development should take cognisance of likely flood areas. An additional risk assessment was undertaken. This shows that the flood extents that fall within the site boundary has a low velocity risk indic ating minimal potential da mage. As such, if a flood event were to occur, the site would be at low/minimal risk of da mage but may be inundated with slow flowing water. This is largely due to the straight channel of the Foxhill Spruit and the artificial berm/reta ining wall.

Figure 12
1:100 year flood extent for the Woodbum Shopping Centre Expansion site

Table 9 Intervention measures per activity at the proposed Woodbum Mall Extension

Unit	Activity/Risk	Severity	Intervention
Preliminary Stage			
Access Roads	Route planning	Low	- Ensure watercourse areas are not disturbed/traversed; - Ensure steep slopes are avoided where possible; - Ensure existing roadsare used where possible.
Platform Areas	Site planning	Low	- Ensure sites are flat; - Ensure sites are away from watercourses; - Ensure the bed rock is stable to avoid collapse..
Dump/Spoil Site	Site planning	Low	- Ensure watercourse disturbance iskept to a minimum; - Ensure steep slopes are avoided where possible.
Construction Phase			
Access Roads	Formalization of roads. Risk of erosion and sedimentation	Low	- Temporary silt traps in any development areas where the slope exceeds 12°, installed along contour. - Silt trapsshould also be placed around the topsoil stockpiles to mainta in the spoil for rehabilitation. - Storm water runoff be directed to the lower side of the roads. At this point it should then be collected in side drains and disposed of in designated places by means of suitable outlet structures (cut-off drains and rockeries) and berms. - No dirty water must be directed into watercourses. - Roads should be constructed at-grade to allow for continued flow (see example above); - Only include side drains where inundation or da mage may occur otherwise the natural flow path would be intemupted; - Stormwater (clean) will be attenuated) and discharged at strategic points into the Foxhillspruit canal.

Infrastructure Areas/Platforms	Contamination from construction activities. Risk of erosion and sedimentation	Moderate	- No dirty water must be directed into watercourses (i.e. water containing sediments from the cleared area). - Dirty water must be directed into silt traps. - Temporary silt traps and bems should be constructed a round the footprint in areas exceeding 12° (see above). - Regularmaintenance of vehic les must be undertaken. - Any oil spills must be immediately cleaned up.
Spoil Sites	Potential oil spills from vehicles and equipment. Risk of erosion and sedimentation	Moderate	- Drains and berms at concentration points to manage and divert surface flow/ runoff from spoil sites during construction. - No dirty water must be directed into watercourses. - Flows must be attenuated and subsequently directed towa rds natural flow paths. - Effluent from construction staff must be treated on-site otherwise it should be removed from the site.
Operation Phase			
Access Roads	Operation of vehicles along roads. Potential erosion channels.	Low	- Undertake a periodic site inspection to verify and inspect the effectiveness and integrity of the storm water run-off control systems. - Immediate rehabilitation should erosion occur. - Temporary silt traps to continue for 1 year after closure in any areas where the slope exceeds 12° should vegetation not be fully established.
Infrastructure Areas/Platforms	Increased stomflow from surface Risk of erosion and sedimentation	Low	- Undertake a periodic site inspection to verify and inspect the effectiveness and integrity of the storm water run-off control systems. - Immediate rehabilitation should erosion occur.
Spoil Sites/Remnant platforms	Continued disturbance of soil and vegetation from footprint.	Low	- Undertake a periodic site inspection to verify and inspect the effectiveness and integrity of the storm water run-off control systems. - Immediate rehabilitation should erosion occur.

5.9 Potential Spill Scenarios

Due to the nature of the activities, there is a chance of potential spills occurning on site (equipment etc.). This is most likely during construction (building, cement mixing, machinery etc.). The potential spill scenarios are outlined as follows:

1. Spills and leaks from vehic les. Regular removal of spills a nd leaks should be undertaken on-site. Ecofriendly detergents should be used.
2. The potential for contamination from spoil sites, rubble and concrete.
3. A storm or flood event occurs during implementation, resulting in structures being exceeded. All activities should stop and a spill mana gement plan be executed. Furthermore, erosion control actions should be initiated.

5.10 Mitigation Measures and Recommendations (Spill Management Plan)

The proposed Woodbum Shopping Centre Expansion development should employ best practise stormwater management practises, as outlined below -

- Implementation should take place during the dry season wherever possible. Activities should stop during heavy rains.
- Vegetation clearing should be limited as much as possible a nd plants resc ued for rehabilitation.
- Directing clean sto mwater towards natural draina ge lines, contours a nd dispersing over grassed, flat areas (preferably the existing wa terc ourses).
- Vehicles and equipment must be kept outside of watercourse buffers.
- Vehicles and equipment must be kept clean and serviced off site.
- Staff/workers on-site must be educated on identifying potential erosion areas and best practice guidelines.
- Energy dissipating measures with regards to stormwater management would be installed where necessary to prevent soil erosion.
- The engineer or contac tor must ensure that only clean stomwa ter runoff enters the environment.
- Drainage should be controlled to ensure that runoff from the project area does not culminate in offsite pollution, flooding or result in a ny da mage to propertiesdownstrea m, of a ny stomwaterdischarge points.
- Infrastructure must have the following:
- Completely lined storage infrastructure (concrete bunded area), with the capacity to conta in 110% of the total a mount of petroc hemic als stored within a specific tank;
- Spills must be completely removed from the site;
- Valves/ taps to conta in or release a ny spillage collected from storage tanks; and
- Fire extinguisher equipment installed within each facility.

Furthermore, as guided by the DWS, the following soil erosion measures should be put into place -

- Erosion control measures should be put in place to minimize erosion along the construction/implementation areas. Extra precautions must be taken in areas where the soils are deemed to be highly erodible.
- Soil erosion onsite should be prevented at all times, i.e. post- construction a ctivities.
- Erosion measures should be implemented in areas prone to erosion such as near water supply points, edges of slopes etc. These measures could include the use of sand bags, hessian sheets, retention or replacement of vegetation if applicable and in accordance with the EMPR and the biodiversity impact assessment.
- Where the land hasbeen disturbed during implementation, it must be reha bilitated a nd re-vegetated back to its original state after completion.
- Stockpiling of soil or a ny othermaterial used during the construction phase must not be allowed on or near slopes, near a watercourse or water body. This is to prevent pollution of the impediment of surface runoff (further details are provided in the EMPr).

In order to reduce the potential impact of spills on site the following must be adhered to:

- Emergency numbers are provided on site - e.g. Spilltech, fire department, ambulance, etc.;
- Spill cleaning kits such as a Drizit kit are a vailable on site;
- All chemic als on site are recorded in the inventory of hazardous substances;
- Equipment, machinery and vehic les are regularly checked and mainta ined in good order;
- Machinery and equipment maintenance is undertaken in designated areas;
- Drip trays are to be placed undemeath machinery and equipment during maintenance;

In the instance of a spill on site the following procedure must be followed:

1. Locate the source of the spill;
2. Stop the spill a nd prevent further spreading;
3. The appropriate oil sponge, absorbent or spill kit (e.g. Drizt) can then be used to clean and remove the spilled substance(s);
4. Spills from trucks/tractors must be contained within a concreted site area and prevented from spreading;
5. Spilled petrochemicals can then be cleaned up and removed using the appropriate oil sponge, absorbent or spill kit (e.g. Drizt);
6. The spill must be reported to the site manager / supervisor and ECO;
7. Depending on the significance of the spill, the incident may also need to be reported to the DEDTEA and DWS.

5.11 Erosion Control Plan

There is an overlap between the storm water management and erosion control. The erosion control is partic ula rly relevant during construction and at certain loc ationsduring operation. The removal of vegetation also lea ves the site at a higher risk.

- Immediately rehabilitate eroded areas:
- Install protective structures, e.g. geotextiles;
- Plant indigenous grasses on any open areas;
- Ensure the slope remains gentle and stable;
- Use vegetation plugs, rock packsor gabions where erosion is visible;
- Immediately revegetate the area.
- Ensure that steeper areas are avoided and that the vegetation remains at these sites.
- Continual erosion monitoring should occur by a tra ined staff member.

The site should take into account the following erosion control mechanisms:

- Geotextiles;
- Gabion baskets;
- Soil binding chemic als;
- Hydroseeding techniques;
- Vegetation plugs;
- mulch

To ensure rehabilitation is effective, it is vital that the working area is managed correctly during the implementation phase. An important part of this management will be that careful preservation and management of soil stockpiles should be implemented from the start of the site. The following points have been provided for use with the rehabilitation actions:

- Top- and subsoil stockpiles (used for road levelling and bank lifting) must not be stockpiled within 100 m or within the 1:100 year floodplain of a watercourse.
- Naturally occuring vegetation removed by site clearance operations may be grubbed in with the topsoil for stockpiling.
- The topsoil shall not be buried or rendered in any other way ina ppropriate for rehabilitation use.
- Topsoil stripping (in widening and new development areas) shall not occur in wet weather and during stripping and stockpiling, the topsoil shall not be subject to a compaction force greater than $1500 \mathrm{~kg} / \mathrm{m}^{2}$ and shall not be pushed for more than 50 m .
- Topsoil shall also only be handled twice, once to strip and stockpile, a nd secondly to replace, level, sha pe and scarify if necessary.
- Top soil stockpilesmust be protected against erosion and a record kept of all top soil quantities a nd should there be shortfalls of top soil required for rehabilitation, a dequate replacement material from commercial sources should be obtained as approved by the Engineer (preferably from areas identified with sourced excess topsoil).
- Equally, excess topsoil shall be landscaped and stabilized in accordance to the requirements of the Engineer and in consultation with the Contractor's Land Rehabilitation Specialist.
- Topsoil stockpiles should not be stockpiled for longer than 6 months. If this can't be avoided, the stockpiles will need to be enriched or upgraded prior to rehabilitation. The Contractor shall consult with the Engineer with regards to matching preconstruction conditions or existing adjacent conditions.
- All stockpiles left for extended periods of time shall be stabilized using approved vegetation cover or other erosion control measures.
- Any excess subsoil must be removed from the road fringe once back filling is completed, a nd spoiled at an agreed spoil site (spoil sites to be agreed between landowner, ECO and Engineer).

6. CONCLUSION

The results provided indicate that most of the two enven areas are outside of the 1:100 year flood extent. However, some of the lower lying a reas (rugby fields and some parking areas) are within the flood extent. The flood risk in this a rea is low primarily due to flood attenuation by the landscape and the flow direction at this point. Additional measures should be taken to ensure that flows are managed within this area. Vegetated areasare encouraged to promote infiltration. The existing shopping centre hasoperated well at attenuating peak events.

The net discharge of water on the system would be similar to that of the pre-development state if Stormwater is accommodated on-site. The risk on downstream users would be low assuming that the development adopts best practice measures and discussed in Section 5.8.

The findings and recommendations are:

1. The nearby watercourses are in a modified condition due to significant historical modification. The surrounding areas should be vegetated to increase the roughness and improve the a esthetic sat the site. This would a ssist in attenuating the flood within this ERF.
2. Some parking a reas are within the flood extent but are of low risk.
3. A catchment delineation was undertaken. However, there is no catchment area outside of the expansion footprint as flow is a lready directed into drains.
4. Strict adherence to best practice guidelines, spill management and erosion control must be throughout operation of the development.
5. Regularma intena nce of culverts/drains/gutters must be undertaken to ensure that the flood risk is not increased due to blockages by debris.
6. Stormwater (clean) will be attenuated) a nd disc harged at strategic points into the Foxhillspruit canal to the pre-development state (natural).
7. Dirty water is isolated on the site (sumps\& separators) and connected to municipal infrastructure and subsequently disc harged.
8. The risk of the proposed development is low assuming adherence to mitigation measures. However, the risk should still be managed through appropriate stom water management and general ma intenance.

7. REFERENCES

1. Drainage Manual, The South Afric an Roads Agency Limited (SANRAL), 6th edition, 2013
2. Drainage Manual, The South Afric an Roads Agency Limited (SANRAL), 5th edition, 2006
3. Lynch, SD. 2003: Development of a Raster Database of Annual, Monthly a nd Daily Rainfall for Southem Africa, WRC Report No. 1156/1/03, Water Research Commision, Pretoria, RSA.
4. SCHULZ一, RE. (2011) Atla s of C limate Change a nd the South Afric an Agric ultural Sector: A 2010 Perspective. Department of Agric ulture, Forestry and Fisheries, Pretoria, RSA. pp 387.
5. SCHULZ一, RE. (2012) Climate Change a nd the South Afric an Water Sector. Where from? Where now? Where to in future? University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa.
6. US Army Corps of Engineers, HEC-GeoRAS version 4.3.93 for Arc GIS 9.3
7. US Amy Corps of Engineers, HEC-RAS version 4.1
8. Visual SCS-SA, R.E. Sc hulze, E.J. Sc hmidt and J.C. Smithers, University of Natal

ANNEXURE A Design Rainfall Values

Design Rainfall in South Africa: Ver 3 (J uly 2012)

User selection has the following criteria
Coordinates: Latitude: 29 degrees 43 minutes; Longitude: 30 degreess 24 minutes
Durations requested: $5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 30 \mathrm{~m}, 45 \mathrm{~m}, 1 \mathrm{~h}, 1.5 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}, 12 \mathrm{~h}, 16 \mathrm{~h}, 20 \mathrm{~h}, 24 \mathrm{~h}, 1 \mathrm{~d}, 2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{~d}, 5 \mathrm{~d}, 6 \mathrm{~d}, 7 \mathrm{~d}$
Retum Periods requested: $2 \mathrm{yr}, 5 \mathrm{yr}, 10 \mathrm{yr}, 20 \mathrm{yr}, 50 \mathrm{yr}, 100 \mathrm{yr}, 200 \mathrm{yr}$
Block Size requested: 0 minutes

Data extracted from Daily Rainfall Estimate Database File
The six closest stations are listed

Station Name SAWS Distance Record Latitude Longitude MAP Altitude Duration Retum Period (years)

UKUUNGA AGR RESSTA $236.9 \quad 219.4 \quad 267.8$	0239700_A	5.4	33	29	30	24714	866	1d	54.1	53.3	54.6	78.8	77.8	79.3 99,	99.497	101.2	123.2	2118.8	127.6	161.1	152.7	7172.3	195.8	183.8	215.2
				2 d	69.8	68.6	71.1	101.4	100.1	102.2	127.9	124.7	130.9	158.7	151.9	166.2	207.9	192.5	226.0	253.3	228.2	285.4	307.3	267.2	360.1
				3 d	80.2	78.5	81.8	116.7	115.0	117.9	147.4	143.2	150.8	182.8	174.0	192.3	239.3	218.6	264.5	291.4	259.0	333.0	353.3	302.0	419.3
				4 d	86.7	85.0	88.5	125.1	123.2	126.3	156.9	152.5	161.2	193.4	184.3	203.6	251.4	230.1	276.3	304.3	270.5	345.9	366.8	313.5	434.1
				5 d	91.8	90.0	93.6	130.8	129.0	132.2	162.8	158.2	166.6	198.8	189.3	208.7	254.8	234.4	278.6	305.2	272.5	344.8	363.7	313.5	424.2
				6 d	95.7	94.1	97.3	135.2	133.3	136.5	166.9	162.6	170.9	202.6	193.9	212.2	257.7	237.4	280.1	306.6	274.9	344.4	363.2	314.4	420.6
				7 d	100.2	98.6	101.9	140.2	138.4	141.5	172.2	168.0	176.2	207.9	198.9	217.2	262.8	243.3	284.1	311.2	280.4	347.8	367.1	320.5	422.7

$\begin{array}{lllllllllllllllllllllllllllllllllllll}\text { THORNVILE } & 0239676 _S & 5.7 & 28 & 29 & 46 & 30 & 23 & 845 & 853 & 1 d & 49.0 & 48.2 & 49.4 & 71.3 & 70.5 & 71.8 & 90.0 & 88.3 & 91.7 & 111.6 & 107.6 & 115.6 & 145.9 & 138.3 & 156.0 & 177.3 & 166.5 & 194.9 & 214.6\end{array}$ 198.7242 .5

BAYNESFIELD ESTATES, $226.9 \quad 210.2 \quad 256.5$ $\begin{array}{lllllllllllllllllllll}2 d & 61.3 & 60.2 & 62.4 & 89.0 & 87.8 & 89.7 & 112.3 & 109.4 & 114.9 & 139.2 & 133.2 & 145.8 & 182.4 & 168.9 & 198.3 & 222.2 & 200.2 & 250.4 & 269.6 & 234.5 \\ 316.0\end{array}$ $\begin{array}{lllllllllllllllllllll}3 d & 71.9 & 70.4 & 73.3 & 104.6 & 103.1 & 105.6 & 132.1 & 128.3 & 135.2 & 163.9 & 156.0 & 172.4 & 214.5 & 195.9 & 237.1 & 261.2 & 232.1 & 298.5 & 316.7 & 270.7 \\ 375.9\end{array}$ $\begin{array}{lllllllllllllllllllllllll}4 d & 76.3 & 74.8 & 77.9 & 110.1 & 108.5 & 111.1 & 138.1 & 134.2 & 141.9 & 170.3 & 162.2 & 179.3 & 221.3 & 202.6 & 243.2 & 267.9 & 238.1 & 304.5 & 322.9 & 276.0 & 382.1\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}5 d & 80.8 & 79.2 & 82.4 & 115.2 & 113.6 & 116.4 & 143.3 & 139.3 & 146.7 & 175.0 & 166.7 & 183.8 & 224.4 & 206.4 & 245.3 & 268.8 & 239.9 & 303.6 & 320.3 & 276.1 & 373.5\end{array}$ $\begin{array}{lllllllllllllllllllll}6 d & 86.3 & 84.9 & 87.8 & 121.9 & 120.3 & 123.1 & 150.6 & 146.7 & 154.1 & 182.8 & 174.9 & 191.4 & 232.4 & 214.2 & 252.6 & 276.6 & 248.0 & 310.7 & 327.6 & 283.6 \\ 379.4\end{array}$ $\begin{array}{lllllllllllllllllllll}7 d & 91.6 & 90.1 & 93.1 & 128.1 & 126.5 & 129.4 & 157.4 & 153.6 & 161.0 & 190.0 & 181.8 & 198.5 & 240.2 & 222.4 & 259.6 & 284.5 & 256.3 & 317.9 & 335.5 & 293.0 \\ 386.3\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}2 d & 64.9 & 63.7 & 66.1 & 94.2 & 93.0 & 95.0 & 118.9 & 115.8 & 121.7 & 147.4 & 141.1 & 154.4 & 193.2 & 178.8 & 210.0 & 235.3 & 212.0 & 265.2 & 285.5 & 248.3 & 334.6\end{array}$ $\begin{array}{lllllllllllllllllllll}3 d & 73.3 & 71.8 & 74.8 & 106.7 & 105.2 & 107.8 & 134.8 & 130.9 & 137.9 & 167.2 & 159.1 & 175.9 & 218.9 & 199.9 & 241.9 & 266.5 & 236.8 & 304.5 & 323.1 & 276.1\end{array} 383.5$ $\begin{array}{lllllllllllllllllllll}4 d & 78.4 & 76.9 & 80.0 & 113.1 & 111.4 & 114.2 & 141.8 & 137.8 & 145.7 & 174.9 & 166.6 & 184.1 & 227.3 & 208.1 & 249.8 & 275.2 & 244.6 & 312.7 & 331.7 & 283.5 \\ 392.5\end{array}$ $\begin{array}{lllllllllllllllllllll}5 \mathrm{~d} & 83.9 & 82.2 & 85.5 & 119.6 & 117.9 & 120.8 & 148.7 & 144.6 & 152.3 & 181.6 & 173.0 & 190.8 & 232.9 & 214.2 & 254.6 & 279.0 & 249.0 & 315.1 & 332.4 & 286.5 \\ 387.7\end{array}$ $\begin{array}{lllllllllllllllllllllll}6 d & 89.1 & 87.6 & 90.6 & 125.9 & 124.2 & 127.1 & 155.4 & 151.4 & 159.1 & 188.7 & 180.6 & 197.6 & 239.9 & 221.1 & 260.8 & 285.5 & 256.0 & 320.7 & 338.1 & 292.8 & 391.6\end{array}$ $\begin{array}{lllllllllllllllllllllllll}7 d & 94.6 & 93.1 & 96.2 & 132.3 & 130.6 & 133.6 & 162.6 & 158.6 & 166.3 & 196.3 & 187.8 & 205.0 & 248.1 & 229.7 & 268.2 & 293.9 & 264.8 & 328.4 & 346.6 & 302.6 & 399.1\end{array}$ BAYNESFIED ESTATE $\begin{array}{lllllllllllllllllllllllllllll} & 0239585 _W & 9.7 & 71 & 29 & 45 & 30 & 19 & 917 & 841 & 1 d & 51.8 & 51.0 & 52.3 & 75.4 & 74.5 & 75.9 & 95.2 & 93.4 & 96.9 & 118.0 & 113.7 & 122.2 & 154.2 & 146.2 & 164.9 & 187.4 & 176.0 & 206.0\end{array}$ $226.8 \quad 210.1 \quad 256.3$
$\begin{array}{lllllllllllllllllllll}2 d & 64.1 & 63.0 & 65.3 & 93.1 & 91.9 & 93.8 & 117.4 & 114.4 & 120.2 & 145.7 & 139.4 & 152.5 & 190.9 & 176.7 & 207.4 & 232.5 & 209.5 & 262.0 & 282.1 & 245.3 \\ 330.6\end{array}$ $\begin{array}{llllllllllllllllllllll}3 d & 72.5 & 71.0 & 73.9 & 105.5 & 104.0 & 106.5 & 133.2 & 129.4 & 136.3 & 165.2 & 157.3 & 173.8 & 216.3 & 197.6 & 239.1 & 263.4 & 234.1 & 301.0 & 319.3 & 272.9 & 379.0\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}4 d & 77.6 & 76.1 & 79.3 & 112.0 & 110.4 & 113.0 & 140.5 & 136.5 & 144.3 & 173.2 & 165.0 & 182.3 & 225.1 & 206.1 & 247.4 & 272.5 & 242.2 & 309.7 & 328.5 & 280.7 & 388.7\end{array}$ $\begin{array}{lllllllllllllllllllll}5 d & 82.9 & 81.3 & 84.5 & 118.1 & 116.5 & 119.4 & 147.0 & 142.9 & 150.5 & 179.5 & 171.0 & 188.5 & 230.1 & 211.6 & 251.6 & 275.6 & 246.1 & 311.4 & 328.5 & 283.1 \\ 383.1\end{array}$ $\begin{array}{lllllllllllllllllllll}6 d & 88.0 & 86.5 & 89.5 & 124.3 & 122.6 & 125.5 & 153.5 & 149.5 & 157.1 & 186.3 & 178.3 & 195.1 & 236.9 & 218.3 & 257.5 & 281.9 & 252.8 & 316.7 & 333.9 & 289.1 \\ 386.7\end{array}$ $\begin{array}{llllllllllllllllllllll}7 d & 93.5 & 92.0 & 95.1 & 130.8 & 129.1 & 132.1 & 160.7 & 156.8 & 164.4 & 194.0 & 185.7 & 202.7 & 245.2 & 227.1 & 265.1 & 290.5 & 261.7 & 324.6 & 342.6 & 299.1 & 394.4\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}\text { COSMOORE, CATO RIDGE } & 0239855 _A & 9.7 & 33 & 29 & 45 & 30 & 29 & 769 & 777 & 1 d & 60.2 & 59.3 & 60.7 & 87.6 & 86.6 & 88.2 & 110.6 & 108.5 & 112.7 & 137.1 & 132.2 & 142.0 & 179.3 & 169.9 & 191.7 & 217.9 & 204.6\end{array}$ $239.5 \quad 263.6 \quad 244.2 \quad 298.0$
$\begin{array}{lllllllllllllllllllllllllllllll}5 d & 94.0 & 92.1 & 95.8 & 133.9 & 132.1 & 135.3 & 166.6 & 162.0 & 170.6 & 203.5 & 193.8 & 213.7 & 260.9 & 239.9 & 285.2 & 312.5 & 279.0 & 353.0 & 372.4 & 321.0 & 434.3\end{array}$ $\begin{array}{llllllllllllllllllllllllll}6 d & 98.5 & 96.8 & 100.2 & 139.1 & 137.2 & 140.4 & 171.8 & 167.3 & 175.8 & 208.5 & 199.5 & 218.3 & 265.1 & 244.3 & 288.1 & 315.4 & 282.9 & 354.4 & 373.6 & 323.5 & 432.7\end{array}$ $\begin{array}{llllllllllllllllllll}7 d & 102.8 & 101.1 & 104.5 & 143.8 & 141.9 & 145.2 & 176.6 & 172.3 & 180.7 & 213.2 & 204.0 & 222.7 & 269.5 & 249.6 & 291.4 & 319.2 & 287.7 & 356.8 & 376.5 \\ 328.8 & 433.5\end{array}$ $216.5 \quad 200.5 \quad 244.7$ $\begin{array}{lllllllllllllllllllllllllllllll}024 & 4240014 _W & 12.7 & 46 & 29 & 44 & 30 & 31 & 753 & 790 & 1 d & 49.4 & 48.7 & 49.9 & 72.0 & 71.1 & 72.4 & 90.9 & 89.1 & 92.5 & 112.6 & 108.6 & 116.6 & 147.3 & 139.5 & 157.4 & 179.0 & 168.0 & 196.7\end{array}$ $\begin{array}{llllllllllllllllllllll} & 6 \mathrm{~d} & 63.7 & 62.5 & 64.8 & 92.4 & 91.3 & 93.2 & 116.6 & 113.7 & 119.4 & 144.7 & 138.4 & 151.5 & 189.6 & 175.5 & 206.0 & 230.9 & 208.0 & 260.2 & 280.2 & 243.7 \\ 328.3\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}3 d & 71.7 & 70.2 & 73.1 & 104.3 & 102.8 & 105.3 & 131.7 & 128.0 & 134.8 & 163.4 & 155.6 & 171.9 & 213.9 & 195.4 & 236.4 & 260.5 & 231.5 & 297.7 & 315.8 & 269.9 & 374.8\end{array}$ $\begin{array}{llllllllllllllllllllllll}4 d & 76.6 & 75.1 & 78.2 & 110.5 & 108.9 & 111.5 & 138.6 & 134.7 & 142.4 & 170.9 & 162.8 & 179.9 & 222.1 & 203.3 & 244.1 & 268.8 & 239.0 & 305.5 & 324.1 & 277.0 & 383.5\end{array}$ $\begin{array}{lllllllllllllllllllll}5 d & 83.6 & 82.0 & 85.3 & 119.2 & 117.6 & 120.5 & 148.3 & 144.2 & 151.9 & 181.2 & 172.5 & 190.3 & 232.3 & 213.6 & 253.9 & 278.2 & 248.3 & 314.3 & 331.5 & 285.8 \\ 386.6\end{array}$ $\begin{array}{lllllllllllllllllllll}6 d & 88.5 & 87.0 & 90.0 & 125.0 & 123.3 & 126.2 & 154.3 & 150.3 & 157.9 & 187.3 & 179.2 & 196.1 & 238.2 & 219.5 & 258.9 & 283.4 & 254.1 & 318.4 & 335.7 & 290.6 \\ 388.8\end{array}$ $\begin{array}{lllllllllllllllllllllllll}7 d & 93.0 & 91.5 & 94.6 & 130.1 & 128.4 & 131.3 & 159.8 & 155.9 & 163.5 & 192.9 & 184.6 & 201.5 & 243.9 & 225.8 & 263.6 & 288.8 & 260.2 & 322.8 & 340.6 & 297.4 & 392.2\end{array}$

Gridded values of all points within the specified block
Latitude Longitude MAP Altitude Duration Retum Period (years)

$\begin{array}{lllllllllllllllllllllllll}29 & 43 & 30 & 24 & 785 & 882 & 5 \mathrm{~m} & 11.1 & 7.0 & 15.1 & 16.1 & 10.3 & 22.0 & 20.4 & 12.9 & 28.1 & 25.2 & 15.7 & 35.4 & 33.0 & 20.2 & 47.8 & 40.1 & 24.3 & 59.7 \\ 48.5 & 29.0 & 74.3\end{array}$ $\begin{array}{llllllllllllllllllllll}10 \mathrm{~m} & 14.9 & 10.3 & 19.6 & 21.8 & 15.0 & 28.4 & 27.5 & 18.8 & 36.3 & 34.0 & 23.0 & 45.8 & 44.5 & 29.5 & 61.8 & 54.1 & 35.5 & 77.2 & 65.5 & 42.4 & 96.1\end{array}$ $\begin{array}{llllllllllllllllllllll}15 \mathrm{~m} & 17.8 & 12.9 & 22.8 & 25.9 & 18.8 & 33.1 & 32.7 & 23.5 & 42.2 & 40.6 & 28.7 & 53.3 & 53.1 & 36.9 & 71.9 & 64.5 & 44.4 & 89.8 & 78.0 & 53.0 & 111.7\end{array}$ $\begin{array}{lllllllllllllllllllllllll}30 \mathrm{~m} & 22.4 & 16.6 & 28.3 & 32.7 & 24.3 & 41.0 & 41.3 & 30.4 & 52.4 & 51.1 & 37.1 & 66.1 & 66.9 & 47.6 & 89.2 & 81.3 & 57.4 & 111.4 & 98.3 & 68.5 & 138.6\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}45 \mathrm{~m} & 25.7 & 19.3 & 32.1 & 37.4 & 28.2 & 46.6 & 47.2 & 35.4 & 59.5 & 58.6 & 43.1 & 75.0 & 76.6 & 55.4 & 101.2 & 93.1 & 66.7 & 126.4 & 112.6 & 79.6 & 157.3\end{array}$ $\begin{array}{llllllllllllllllllllll}1 h & 28.3 & 21.5 & 35.1 & 41.2 & 31.4 & 50.9 & 52.0 & 39.3 & 65.0 & 64.5 & 47.9 & 82.0 & 84.3 & 61.6 & 110.7 & 102.4 & 74.2 & 138.2 & 123.9 & 88.5 & 172.0\end{array}$ $\begin{array}{llllllllllllllllllllll}1.5 & h & 32.4 & 25.0 & 39.8 & 47.2 & 36.5 & 57.8 & 59.5 & 45.7 & 73.8 & 73.8 & 55.7 & 93.0 & 96.5 & 71.6 & 125.5 & 117.3 & 86.2 & 156.8 & 141.9 & 102.9 \\ 195.2\end{array}$ $\begin{array}{llllllllllllllllllllll}2 h & 35.7 & 27.8 & 43.5 & 51.9 & 40.6 & 63.2 & 65.5 & 50.9 & 80.7 & 81.2 & 62.0 & 101.7 & 106.2 & 79.6 & 137.3 & 129.1 & 95.9 & 171.5 & 156.2 & 114.4 & 213.4\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}4 \mathrm{~h} & 41.4 & 32.9 & 49.8 & 60.3 & 48.1 & 72.3 & 76.1 & 60.3 & 92.4 & 94.3 & 73.4 & 116.5 & 123.3 & 94.3 & 157.2 & 149.9 & 113.6 & 196.4 & 181.4 & 135.6 & 244.4\end{array}$ $\begin{array}{llllllllllllllllllllll}6 h & 45.2 & 36.3 & 53.9 & 65.8 & 53.1 & 78.3 & 83.1 & 66.5 & 100.0 & 102.9 & 81.0 & 126.1 & 134.6 & 104.2 & 170.2 & 163.6 & 125.4 & 212.6 & 197.9 & 149.7 & 264.5\end{array}$ $\begin{array}{llllllllllllllllllllll}8 \mathrm{~h} & 48.1 & 39.0 & 57.0 & 70.0 & 57.0 & 82.8 & 88.4 & 71.4 & 105.8 & 109.5 & 87.0 & 133.4 & 143.2 & 111.7 & 180.0 & 174.0 & 134.6 & 224.9 & 210.6 & 160.6 & 279.8\end{array}$ $\begin{array}{lllllllllllllllllllll}10 h & 50.4 & 41.2 & 59.6 & 73.5 & 60.1 & 86.5 & 92.7 & 75.4 & 110.5 & 114.9 & 91.8 & 139.3 & 150.3 & 118.0 & 188.0 & 182.6 & 142.1 & 234.9 & 221.0 & 169.6 \\ 292.3\end{array}$ $\begin{array}{lllllllllllllllllllllll}12 \mathrm{~h} & 52.5 & 43.0 & 61.7 & 76.4 & 62.9 & 89.7 & 96.4 & 78.8 & 114.5 & 119.5 & 96.0 & 144.4 & 156.3 & 123.4 & 194.9 & 189.9 & 148.6 & 243.4 & 229.8 & 177.3 & 302.9\end{array}$ $\begin{array}{lllllllllllllllllllllllll}16 \mathrm{~h} & 55.8 & 46.2 & 65.3 & 81.3 & 67.5 & 94.9 & 102.6 & 84.6 & 121.1 & 127.2 & 103.0 & 152.7 & 166.3 & 132.4 & 206.1 & 202.1 & 159.4 & 257.5 & 244.5 & 190.2 & 320.4\end{array}$ $\begin{array}{lllllllllllllllllllll}20 h & 58.6 & 48.8 & 68.2 & 85.3 & 71.3 & 99.1 & 107.7 & 89.3 & 126.5 & 133.4 & 108.8 & 159.5 & 174.5 & 139.8 & 215.3 & 212.0 & 168.3 & 269.0 & 256.6 & 200.9 \\ 334.7\end{array}$ $\begin{array}{lllllllllllllllllllll}24 \mathrm{~h} & 60.9 & 51.0 & 70.7 & 88.7 & 74.5 & 102.7 & 112.0 & 93.4 & 131.1 & 138.8 & 113.7 & 165.3 & 181.5 & 146.2 & 223.1 & 220.5 & 176.0 & 278.7 & 266.8 & 210.1\end{array} 346.8$ $\begin{array}{lllllllllllllllllllll}1 d & 51.7 & 43.3 & 60.0 & 75.3 & 63.2 & 87.1 & 95.0 & 79.2 & 111.2 & 117.7 & 96.5 & 140.2 & 153.9 & 124.0 & 189.3 & 187.1 & 149.3 & 236.4 & 226.4 & 178.2 \\ 294.2\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}2 d & 65.6 & 58.6 & 72.2 & 95.5 & 85.6 & 104.9 & 120.6 & 107.3 & 134.0 & 149.4 & 130.7 & 168.9 & 195.4 & 167.9 & 227.9 & 237.5 & 202.2 & 284.8 & 287.3 & 241.3 & 354.3\end{array}$ $\begin{array}{llllllllllllllllllllll}3 d & 75.4 & 70.0 & 80.5 & 109.8 & 102.2 & 116.9 & 138.6 & 128.1 & 149.4 & 171.8 & 156.1 & 188.3 & 224.7 & 200.5 & 254.1 & 273.0 & 241.5 & 317.5 & 330.4 & 288.2 & 395.0\end{array}$ $\begin{array}{lllllllllllllllllllll}\text { 4d } & 81.6 & 74.5 & 88.3 & 118.8 & 108.8 & 128.2 & 149.9 & 136.4 & 163.8 & 185.8 & 166.1 & 206.4 & 243.0 & 213.5 & 278.6 & 295.3 & 257.1 & 348.1 & 357.3 & 306.8 \\ 433.1\end{array}$ $\begin{array}{lllllllllllllllllll}5 d & 86.7 & 78.2 & 94.8 & 126.3 & 114.2 & 137.7 & 159.4 & 143.2 & 175.9 & 197.5 & 174.4 & 221.7 & 258.3 & 224.1 & 299.3 & 313.9 & 269.9 & 373.8 \\ 379.8 & 322.1 & 465.2\end{array}$ $\begin{array}{llllllllllllllllllllllll}6 d & 91.1 & 81.4 & 100.5 & 132.7 & 118.9 & 146.0 & 167.5 & 149.0 & 186.4 & 207.6 & 181.5 & 235.0 & 271.5 & 233.2 & 317.2 & 329.9 & 280.8 & 396.3 & 399.2 & 335.2 & 493.1\end{array}$ $\begin{array}{llllllllllllllllllllllll}7 d & 95.0 & 84.1 & 105.6 & 138.4 & 122.9 & 153.4 & 174.7 & 154.1 & 195.9 & 216.5 & 187.7 & 246.9 & 283.1 & 241.2 & 333.3 & 344.1 & 290.4 & 416.3 & 416.3 & 346.6 & 518.1\end{array}$

ANNEXURE B

Rational Method

Description of Catchment	Woodburn Shopping Centre Expansion							
River detail	Foxhill Spruit							
Calculated by	BCSS				Date		14/04/2022	
Physical characteristics								
Size of catchment (A)			10	km ${ }^{2}$	Rainfall Region			
Longest Watercourse			6	km	Area Distribution Factors			
Average slope ($\mathrm{Sav}^{\text {a }}$)			0.02	m / m	Rural (a)	Urban (β)		Lakes(v)
Dolomite Area ($\mathrm{D}_{\%}$)			0	\%	0.5	0.5		0
Mean Annual Rainfall (MAR)			750	mm				
Catchment Characteristics		Flat/permeable		\%				
r - look up from Table 3C. 3		Medium grass cover		0.4				
Rural (1)				Urban (2)				
Surface Slope	\%	Factor	C_{s}	Description		\%	Facto	C_{2}
Vleis and Pans	5	0.05	0.003	Lawns				
Flat Areas	25	0.11	0.028	Sandy, flat (<2\%)			0.075	-
Hilly	60	0.2	0.120	Sandy, steep (>7\%)			0.175	-
Steep Areas	10	0.3	0.030	Heavy soil, flat (<2\%)		25	0.15	0.038
Total	100	-	0.180	Heavy soil, steep (>7\%)			0.3	-
Permeability	\%	Factor	C_{p}	Residential Areas				
Very Permeable	10	0.05	0.005	Houses		55	0.4	0.220
Permeable	50	0.1	0.050	Flats			0.6	-
Semi-permeable	30	0.2	0.060	Industry				
Impermeable	10	0.3	0.030	Light industry			0.65	-
Total	100	-	0.145	Heavy Industry			0.75	-
Vegetation	\%	Factor	Cv	Business				
Thick bush and plantation	20	0.05	0.010	City Centre			0.825	-
Light bush and farm-lands	50	0.15	0.075	Suburban			0.6	-
Grasslands	25	0.25	0.063	Streets		20	0.825	0.165
No Vegetation	5	0.3	0.015	Maximum flood			1.00	-
Total	100	-	0.163	Total		100	-	0.423
Time of concentration (T_{c})	Defined Watercourse			Notes:				
Overland flow	Defined watercourse			Pre-development Run-off				
$T_{c}=0.604\left(\frac{r L}{\sqrt{S_{a v}}}\right)^{0}$				Latitude:				2842'
				$T C=$		Longitud e:		$32^{\circ} 02^{\prime}$
				$\begin{array}{r} 1.188488 \\ 07 \end{array}$				
2.3 $\begin{array}{l}\text { Hour } \\ \text { s }\end{array}$		1.2	Hours					
Run-off coefficient								
Return period (years), T		2	5	10	20	50	100	Max
Run-off coefficient, $\mathrm{C}_{1}$$\left(C_{1}=C_{s}+C_{p}+C_{v}\right)$		0.488	0.488	0.488	0.488	0.488	0.488	0.4875
Adjusted for dolomitic areas, $\mathrm{C}_{1 \mathrm{D}}$$\left(=C_{1}\left(1-D_{\%}\right)+C_{1} D_{\%}\left(\sum\left(\mathrm{D}_{\text {factor }} \times \mathrm{C}_{\mathrm{s} \%}\right)\right)\right.$		0.4875	0.4875	0.4875	0.4875	0.4875	$\begin{gathered} 0.487 \\ 5 \end{gathered}$	0.4875
Adjustment factor for initial saturation, F_{t}		0.5	0.55	0.6	0.67	0.83	1	1
Adjusted run-off coefficient, $\mathrm{C}_{1 \text { T }}$		$\begin{gathered} 0.2437 \\ 5 \end{gathered}$	$\begin{gathered} 0.26812 \\ 5 \end{gathered}$	0.2925	0.326625	$\begin{gathered} 0.40462 \\ 5 \end{gathered}$	$\begin{gathered} 0.487 \\ 5 \end{gathered}$	0.4875

$\left(=C_{1 D} \times F_{t}\right)$							
Combined run-off coeffiecient C_{T} $\left(=\alpha C_{1 T}+\beta C_{2}+\gamma C_{3}\right)$	$\begin{gathered} 0.3331 \\ 25 \end{gathered}$	$\begin{gathered} 0.34531 \\ 25 \end{gathered}$	0.3575	0.3745625	$\begin{gathered} 0.41356 \\ 25 \end{gathered}$	0.455	0.455
Rainfall							
Return period (years), \mathbf{T}	2	5	10	20	50	100	Max
Point Rainfall (mm), P_{T}	45.0	71.0	93.0	119.0	160.0	199.0	
Point Intensity (mm/hour), $\mathrm{P}_{\mathrm{iT}}\left(=\mathrm{P}_{\mathrm{T}} / \mathrm{T}_{\mathrm{C}}\right.$)	37.9	59.7	78.3	100.1	134.6	167.4	0.0
Area Reduction Factor (\%), ARF_{T}	100	100	100	100	100	100	100
Average Intensity (mm/hour), I_{T} $\left(=P_{\mathrm{iT}} \times \mathrm{ARF}_{\mathrm{T}}\right)$	37.9	59.7	78.3	100.1	134.6	167.4	0.0
Return period (years), T	2	5	10	20	50	100	Max
Peak flow ($\mathrm{m}^{3} / \mathrm{s}$),	35.037	57.302	77.707	104.177	154.655	$\begin{gathered} 211.6 \\ 25 \end{gathered}$	0.000

CATCHMENT NAME	Foxhill						
PROJECT NO	Woodburn		Shopping	Centre			
RUN NO							
TOTAL CATCHMENT AREA (km^2)	10.00						
STORM INTENSITY DISTRIBUTION TYPE	3						
CATCHMENT LAG TIME (h)	1.47						
COEFFICIENT OF INITIAL ABSTRACTION:	0.10						
CURVE NUMBERS: Initial	Fin						
Sub-catchment 180	80.						
Sub-catchment 2775	75.						
Sub-catchment 368	68.						
RETURN PERIOD (YEARS)	2	5	10	20	50	100	200
DESIGN DAILY RAINFALL DEPTH (mm)	51	70	84	100	123	143	164
DESIGN STORMFLOW DEPTH (mm)							
Sub-catchment 1	18.4	31.9	42.7	55.8	75.5	93.3	112.4
Sub-catchment 2	14.2	25.9	35.6	47.6	65.9	82.6	100.7
Sub-catchment 3	9.6	19.0	27.1	37.3	53.5	68.5	85.1
TOTAL RUNOFF DEPTH (mm)	15.6	27.7	37.7	50.0	68.6	85.6	104.0
DESIGN STORMFLOW VOLUME (thousands m^3)							
Sub-catchment 1	88.5	152.9	205.0	267.9	362.6	447.8	539.4
Sub-catchment 2	52.6	95.8	131.8	175.9	243.7	305.5	372.6
Sub-catchment 3	14.4	28.5	40.6	56.0	80.2	102.8	127.7
TOTAL STORMFLOW VOLUME (millions m^3)	0.2	0.3	0.4	0.5	0.7	0.9	1.0
COMPUTED CURVE NUMBER	76.7	76.6	76.6	76.5	76.5	76.4	76.4
PEAK DISCHARGE (m^3/s)	13.6	24.8	34.0	45.5	63.0	79.0	96.3

TIME DISCHARGE
(minutes) (cubic metres/sec) (litres/sec)

680.	0.003	3.
696.	0.031	31.
712.	0.209	209.
728.	1.740	1740.
744.	3.805	3805.
760.	6.110	6110.
776.	8.553	8553.
792.	11.052	11052.
808.	13.392	13392.
824.	13.631	13631.
840.	13.060	13060.
857.	12.160	12160.
873.	11.070	11070.
889.	9.855	9855.
905.	8.548	8548.
921.	7.170	7170.
937.	5.737	5737.
953.	4.270	4270.
969.	2.853	2853.
985.	2.213	2213.
1001.	1.865	1865.
1017.	1.630	1630.
1033.	1.456	1456.
1049.	1.320	1320.
1065.	1.210	1210.
1081.	1.118	1118.
1097.	1.041	1041.
1113.	0.975	975.
1130.	0.917	917.
1146.	0.866	866.
1162.	0.821	821.
1178.	0.781	781.
1194.	0.745	745.
1210.	0.712	712.
1226.	0.683	683.
1242 .	0.655	655.
1258.	0.631	631.
1274.	0.608	608.
1290.	0.586	586.

1306.	0.567	567.
1322.	0.548	548.
1338.	0.531	531.
1354.	0.515	515.
1370.	0.500	500.
1386.	0.486	486.
1403.	0.473	473.
1419.	0.448	460.
1435.	0.432	448.
1451.	0.409	432.
1467.	0.378	409.
1483.	0.341	378.
1499.	0.297	341.
1515.	0.197	297.
1531.	0.153	246.
1547.	0.116	197.
1563.	0.084	153.
1579.	0.057	8.
1595.	0.036	57.
1611.	0.008	36.
1627.	0.002	19.
1643.		8.
1659.		2.
1676.		

$\begin{array}{llr}\text { RETURN PERIOD (years) } & = & 5 \\ \text { DESIGN RAINFALL (mm) } & = & 70 \\ \text { STORM DISTRIBUTION TYPE } & = & 3 \\ \text { CURVE NUMBER (computed) } & = & 76.6 \\ \text { LAG TIME (h) } & = & 1.5 \\ \text { PEAK DISCHARGE (m^3/s) } & = & 24.79\end{array}$
**)
(minutes) (cubic metres/sec) (litres/sec)

632.	0.001	1.
648.	0.006	6.
664.	0.024	24.
680.	0.074	74.
696.	0.206	206.
712.	0.692	692.
728.	3.654	3654.
744.	7.511	7511.
760.	11.747	11747.
776.	16.171	16171.
792.	20.616	20616.
808.	24.634	24634.
824.	24.795	24795.
840.	23.580	23580.
857.	21.815	21815.
873.	19.737	19737.
889.	17.451	17451.
905.	15.016	15016.
921.	12.472	12472 .
937.	9.853	9853.
953.	7.205	7205.
969.	4.703	4703.
985.	3.628	3628.
1001.	3.050	3050.
1017.	2.662	2662.
1033.	2.375	2375.
1049.	2.151	2151.
1065.	1.970	1970.
1081.	1.820	1820.
1097.	1.693	1693.
1113.	1.584	1584.
1130.	1.490	1490.
1146.	1.407	1407.
1162.	1.333	1333.
1178.	1.267	1267.
1194.	1.208	1208.
1210.	1.155	1155.
1226.	1.106	1106.
1242.	1.062	1062.
1258.	1.021	1021.
1274.	0.983	983.
1290.	0.949	949.
1306.	0.916	916.
1322.	0.887	887.
1338.	0.859	859.
1354.	0.833	833.
1370.	0.808	808.
1386.	0.785	785.
1403.	0.764	764.
1419.	0.743	743.
1435.	0.724	724.
1451.	0.697	697.
1467.	0.659	659.
1483.	0.610	610.

1499.	0.550	550.
1515.	0.478	478.
1531.	0.396	396.
1547.	0.317	317.
1563.	0.247	247.
1579.	0.187	187.
1595.	0.135	135.
1611.	0.092	92.
1627.	0.057	57.
1643.	0.031	31.
1659.	0.013	13.
1676.	0.003	3.

1659.	0.017	17.
1676.	0.003	3.

RETURN PERIOD (years) $=100$
DESIGN RAINFALI (mm) = 143
STORM DISTRIBUTION TYPE $=3$
CURVE NUMBER (computed) $=76.4$
LAG TIME (h)
PEAK DISCHARGE $\left(\mathrm{m}^{\wedge} 3 / \mathrm{s}\right)=79.02$

```
*********************************************************************
(minutes) (cubic metres/sec) (litres/sec)
\begin{tabular}{lrr}
471. & 0.000 & 0 \\
487. & 0.003 & 3 \\
503. & 0.009 & 9 \\
519. & 0.021 & 21 \\
535. & 0.041 & 74 \\
551. & 0.074 & 122 \\
567. & 0.122 & 190 \\
583. & 0.282 & 282 \\
600. & 0.407 & 407 \\
616. & 0.576 & 576 \\
632. & 0.811 & 811 \\
648. & 1.152 & 1152 \\
664. & 1.681 & 1681 \\
680. & 2.626 & 2626
\end{tabular}
\begin{tabular}{lll}
696. & 2.626 & 2626 \\
712. & 5.006 & 5006
\end{tabular}
\begin{tabular}{lll}
728. & 15.101 & 15101 \\
744 & 27.555 & 27555
\end{tabular}
\begin{tabular}{lll}
74. & 27.555 & 2755 \\
760. & 40.886 & 4088
\end{tabular}
\begin{tabular}{lll}
776. & 54.494 & 54494 \\
792. & 67.771 & 67771
\end{tabular}
\begin{tabular}{lll}
808. & 79.019 & 79019 \\
824. & 78.065 & 78065
\end{tabular}
840. \(73.302 \quad 73302\)
857. \(67.067 \quad 67067\)
\begin{tabular}{lll}
873. & 60.018 & 60018 \\
889. & 52.449 & 52449
\end{tabular}
905. \(44.530 \quad 44530\)
\begin{tabular}{lll}
921. & 36.380 & 36380 \\
937 & 28.117
\end{tabular}
953. \(\quad 19.92717\)
\begin{tabular}{rrr}
969. & 12.464 & 12464 \\
985 & 9.530 & 9530
\end{tabular}
\begin{tabular}{lll}
1001. & 7.981 & 7981 \\
1017. & 6.946 & 6946
\end{tabular}
\begin{tabular}{lll}
1017. & 6.185 & 6185 \\
1033. & 5.593 & 5593 \\
1049. & 5.115 & 5115.
\end{tabular}
1065. \(5.115 \quad 5115\)
1081. \(4.720 \quad 4720\)
\begin{tabular}{lll}
1097. & 4.386 & 4386 \\
1113. & 4.100 & 4100 \\
1130. & 3.852 & 3852
\end{tabular}
1146 . 3.6343634
\begin{tabular}{lll}
1162. & 3.441 & 3441 \\
1178. & 3.269 & 3269
\end{tabular}
\begin{tabular}{lll}
1194. & 3.115 & 311 \\
1210. & 2.975 & 297 \\
1226. & 2.848 & 2848
\end{tabular}
1226. \(2.848 \quad 2848\)
\begin{tabular}{lll}
1258. & 2.732 & 2732 \\
12626
\end{tabular}
\begin{tabular}{lll}
1274. & 2.528 & 2528 \\
1290. & 2.437 & 2437
\end{tabular}
1306. 2.354235
\begin{tabular}{lll}
1322. & 2.276 & 2276 \\
1338. & 2.203 & 2203 \\
1354. & 2.135 & 2135
\end{tabular}
\begin{tabular}{lll}
1354. & 2.135 & 2135 \\
1370. & 2.072 & 2072 \\
1386. & 2.012 & 2012
\end{tabular}
1386. \(2.012 \quad 2012\)
\begin{tabular}{lll}
1403. & 1.956 & 1956 \\
1419. & 1.903 & 1903
\end{tabular}
\begin{tabular}{lll}
1419. & 1.853 & 1853 \\
1435. & 1.785 & 1785 \\
1451 & 1.687 & 1687
\end{tabular}
\begin{tabular}{lll}
1467. & 1.687 & 1687
\end{tabular}
\begin{tabular}{lll}
1483. & 1.560 & 1560 \\
1499. & 1.406 & 1406.
\end{tabular}
\begin{tabular}{lll}
1515. & 1.223 & 1223 \\
1531. & 1.013 & 1013
\end{tabular}
1547. \(0.811 \quad 811\)
\begin{tabular}{lll}
1563. & 0.477 & 477 \\
1595. & 0.345 & 345
\end{tabular}
1611. \(0.235 \quad 235\)
\begin{tabular}{rrr}
1627. & 0.146 & 146. \\
1643. & 0.079 & 79. \\
1659. & 0.033 & 33.
\end{tabular}

1676 . 0.006
\begin{tabular}{llr} 
RETURN PERIOD (years) & \(=\) & 200 \\
DESIGN RAINFALL (mm) & \(=\) & 164 \\
STORM DISTRIBUTION TYPE & \(=\) & 3 \\
CURVE NUMBER (computed) & \(=\) & 76.4 \\
LAG TIME (h) & \(=\) & 1.5 \\
PEAK DISCHARGE (m^3/s) & \(=96.30\) \\
\(\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)\)
\end{tabular}

TIME
\begin{tabular}{|c|c|c|}
\hline 423. & 0.000 & 0. \\
\hline 439. & 0.001 & 1. \\
\hline 455. & 0.004 & 4. \\
\hline 471. & 0.011 & 11. \\
\hline 487. & 0.023 & 23. \\
\hline 503. & 0.045 & 45. \\
\hline 519. & 0.078 & 78. \\
\hline 535. & 0.126 & 126. \\
\hline 551. & 0.190 & 190. \\
\hline 567. & 0.275 & 275. \\
\hline 583. & 0.384 & 384. \\
\hline 600. & 0.524 & 524. \\
\hline 616. & 0.706 & 706. \\
\hline 632. & 0.946 & 946. \\
\hline 648. & 1.272 & 1272. \\
\hline 664. & 1.733 & 1733. \\
\hline 680. & 2.440 & 2440. \\
\hline 696. & 3.678 & 3678. \\
\hline 712. & 6.721 & 6721. \\
\hline 728. & 19.111 & 19111. \\
\hline 744. & 34.287 & 34287. \\
\hline 760. & 50.470 & 50470. \\
\hline 776. & 66.930 & 66930. \\
\hline 792. & 82.914 & 82914. \\
\hline 808. & 96.305 & 96305. \\
\hline 824. & 94.878 & 94878. \\
\hline 840. & 88.919 & 88919. \\
\hline 857. & 81.219 & 81219. \\
\hline 873. & 72.562 & 72562. \\
\hline 889. & 63.297 & 63297. \\
\hline 905. & 53.628 & 53628. \\
\hline 921. & 43.699 & 43699. \\
\hline 937. & 33.658 & 33658. \\
\hline 953. & 23.735 & 23735. \\
\hline 969. & 14.747 & 14747. \\
\hline 985. & 11.261 & 11261. \\
\hline 1001. & 9.425 & 9425. \\
\hline 1017. & 8.200 & 8200. \\
\hline 1033. & 7.299 & 7299. \\
\hline 1049. & 6.599 & 6599. \\
\hline 1065. & 6.034 & 6034. \\
\hline 1081. & 5.567 & 5567. \\
\hline 1097. & 5.173 & 5173. \\
\hline 1113. & 4.835 & 4835. \\
\hline 1130. & 4.542 & 4542. \\
\hline 1146. & 4.284 & 4284. \\
\hline 1162. & 4.057 & 4057. \\
\hline 1178. & 3.853 & 3853. \\
\hline 1194. & 3.671 & 3671. \\
\hline 1210. & 3.506 & 3506. \\
\hline 1226. & 3.356 & 3356. \\
\hline 1242. & 3.219 & 3219. \\
\hline 1258. & 3.093 & 3093. \\
\hline 1274. & 2.978 & 2978. \\
\hline 1290. & 2.871 & 2871. \\
\hline 1306. & 2.772 & 2772. \\
\hline 1322. & 2.681 & 2681. \\
\hline 1338. & 2.595 & 2595. \\
\hline 1354. & 2.515 & 2515. \\
\hline 1370. & 2.440 & 2440. \\
\hline 1386. & 2.370 & 2370. \\
\hline 1403. & 2.303 & 2303. \\
\hline 1419. & 2.241 & 2241. \\
\hline 1435. & 2.182 & 2182. \\
\hline 1451. & 2.101 & 2101. \\
\hline 1467. & 1.986 & 1986. \\
\hline 1483. & 1.837 & 1837. \\
\hline 1499. & 1.655 & 1655. \\
\hline 1515. & 1.440 & 1440. \\
\hline 1531. & 1.193 & 1193. \\
\hline 1547. & 0.954 & 954. \\
\hline 1563. & 0.744 & 744. \\
\hline 1579. & 0.562 & 562. \\
\hline 1595. & 0.406 & 406. \\
\hline 1611. & 0.276 & 276. \\
\hline 1627. & 0.172 & 172. \\
\hline 1643. & 0.093 & 93. \\
\hline 1659. & 0.039 & 39. \\
\hline 1676. & 0.008 & 8. \\
\hline
\end{tabular}```

